有人可以解释如何为三角网格生成索引吗?
程序为球体对象生成顶点数组,并生成索引以使用glDrawElements方法绘制。
我不明白这些索引与堆栈和切片的关系。
我是openGL的新手,我花了很多时间试图理解这段代码是如何工作的。
提前致谢。 :)
int stacks = 40, slices = 40; // stacks = no. of Latitude lines,
// slices = no. of Longitude lines
double deltaLong = PI * 2 / slices;
double deltaLat = PI / stacks;
// Generate vertices coordinates, normal values, and texture coordinates
numVertices = (slices + 1) * (stacks - 1) + 2;
vertices = new float[numVertices * 3];
normals = new float[numVertices * 3];
textures = new float[numVertices * 2];
// North pole point
normals[0] = 0; normals[1] = 0; normals[2] = 1;
vertices[0] = 0; vertices[1] = 0; vertices[2] = radius;
textures[0] = 0.5f; textures[1] = 1.0f;
k = 1;
// vertices on the main body
for (i = 1; i < stacks; i++) {
for (j = 0; j <= slices; j++) {
normals[3 * k] = sin(deltaLat * i) * cos(deltaLong * j);
normals[3 * k + 1] = sin(deltaLat * i) * sin(deltaLong * j);
normals[3 * k + 2] = cos(deltaLat * i);
vertices[3 * k] = radius * normals[3 * k];
vertices[3 * k + 1] = radius * normals[3 * k + 1];
vertices[3 * k + 2] = radius * normals[3 * k + 2];
textures[2 * k] = (float) j / slices;
textures[2 * k + 1] = 1 - (float) i / stacks;
k++;
}
}
// South pole point
normals[3 * k] = 0;normals[3 * k + 1] = 0;normals[3 * k + 2] = -1;
vertices[3 * k] = 0;vertices[3 * k + 1] = 0;vertices[3 * k + 2] = -radius;
textures[2 * k] = 0.5f; textures[2 * k + 1] = 0.0f; k++;
//The above code is to generate vertices array and I think I understand how it works.
//**********************************
// Below is what I don't understand
int numIndices = (stacks - 1) * slices * 6; //why multiply by 6?
int[] indices = new int[numIndices];
int k = 0;
//add indices in North Pole region (no. of elements is slices * 3)
// WHY 3 times thenumber of slices?
for (int j = 1; j<= slices; j++){
indices[k++] = 0;
indices[k++] = j;
indices[k++] = j+1;
}
//add indices in South Pole Region (no. of element is slices * 3)
int temp = numVertices - 1;
for (int j = temp-1; j > temp - slices - 1; j--){
indices [k++] = temp;
indices [k++] = j;
indices [k++] = j - 1;
}
// add body (no. of element is (stacks - 2) * slices * 6
for (i = 1; i < stacks - 1; i++) {
for (j = 1; j <= slices; j++) {
// each quad gives two triangles
// triangle one
indices[k++] = (i - 1) * slices + j;
indices[k++] = i * slices + j;
indices[k++] = i * slices + j + 1;
// triangle two
indices[k++] = (i - 1) * slices + j;
indices[k++] = i * slices + j + 1;
indices[k++] = (i - 1) * slices + j + 1;
}
}
我终于明白了我所展示的球体代码中的索引是如何工作的,并想出了如何制作如上图所示的圆柱体。
答案 0 :(得分:3)
你可以创建一些包含所有顶点的顶点数组,在执行这样的函数之后(C的sory但我没有java例子(比使用通用容器的C要简单得多))。此算法允许您索引任意顶点数组以优化性能和内存消耗(非常有用),并解释顶点索引的工作原理。
// 1254 Verticies
// 2141 Texture Coordinates
// 1227 Normals
// 2248 Triangles
static short face_indicies[2248][9] = {
// Object #-1
{0,15,14 ,0,1,2 ,0,1,2 }, {0,1,15 ,0,3,1 ,0,3,1 }, {1,16,15 ,3,4,1 ,3,4,1 },
{1,2,16 ,3,5,4 ,3,5,4 }, {2,17,16 ,5,6,4 ,5,6,4 }, {2,3,17 ,5,7,6 ,5,7,6 },
{3,18,17 ,7,8,6 ,7,8,6 }, {3,4,18 ,7,9,8 ,7,9,8 }, {4,19,18 ,9,10,8 ,9,10,8 },
//.................................................................
};
static GLfloat vertices [1254][3] = {
{1.32715f,-1.99755f,-0.614826f},{1.32715f,-2.20819f,-0.343913f},{1.32715f,-2.5155f,-0.191263f},
{1.32715f,-2.85867f,-0.187049f},{1.32715f,-3.16964f,-0.332104f},{1.32715f,-3.38686f,-0.597763f},
{1.32715f,-3.46734f,-0.931359f},{1.32715f,-3.39508f,-1.26683f},{1.32715f,-3.18445f,-1.53774f},
//..................................................................
};
static GLfloat normals [1227][3] = {
{-0.45634f,0.376195f,-0.80637f},{0.456348f,0.688811f,-0.563281f},{0.45634f,0.376194f,-0.80637f},
{-0.456348f,0.688811f,-0.563281f},{0.456341f,0.865005f,-0.208615f},{-0.456341f,0.865005f,-0.208615f},
{0.456341f,0.869868f,0.187303f},{-0.456341f,0.869868f,0.187303f},{0.456349f,0.702436f,0.546196f},
//..................................................................
};
static GLfloat textures [2141][2] = {
{0.94929f,0.497934f},{0.99452f,0.477509f},{0.994669f,0.497506f},
{0.949142f,0.47796f},{0.994339f,0.457508f},{0.948961f,0.457992f},
};
////////////////////////////////////////////////////////////////
// These are hard coded for this particular example
GLushort uiIndexes[2248*3]; // Maximum number of indexes
GLfloat vVerts[2248*3][3]; // (Worst case scenario)
GLfloat vText[2248*3][2];
GLfloat vNorms[2248*3][3];
int iLastIndex = 0; // Number of indexes actually used
/////////////////////////////////////////////////////////////////
// Compare two floating point values and return true if they are
// close enough together to be considered the same.
int IsSame(float x, float y, float epsilon)
{
if(fabs(x-y) < epsilon)
return 1;
return 0;
}
///////////////////////////////////////////////////////////////
// Goes through the arrays and looks for duplicate verticies
// that can be shared. This expands the original array somewhat
// and returns the number of true unique verticies that now
// populates the vVerts array.
int IndexTriangles(void)
{
int iFace, iPoint, iMatch;
float e = 0.000001; // How small a difference to equate
// LOOP THROUGH all the faces
int iIndexCount = 0;
for(iFace = 0; iFace < 2248; iFace++)
{
for(iPoint = 0; iPoint < 3; iPoint++)
{
// Search for match
for(iMatch = 0; iMatch < iLastIndex; iMatch++)
{
// If Vertex is the same...
if(IsSame(vertices[face_indicies[iFace][iPoint]][0], vVerts[iMatch][0], e) &&
IsSame(vertices[face_indicies[iFace][iPoint]][1], vVerts[iMatch][1], e) &&
IsSame(vertices[face_indicies[iFace][iPoint]][2], vVerts[iMatch][2], e) &&
// AND the Normal is the same...
IsSame(normals[face_indicies[iFace][iPoint+3]][0], vNorms[iMatch][0], e) &&
IsSame(normals[face_indicies[iFace][iPoint+3]][1], vNorms[iMatch][1], e) &&
IsSame(normals[face_indicies[iFace][iPoint+3]][2], vNorms[iMatch][2], e) &&
// And Texture is the same...
IsSame(textures[face_indicies[iFace][iPoint+6]][0], vText[iMatch][0], e) &&
IsSame(textures[face_indicies[iFace][iPoint+6]][1], vText[iMatch][1], e))
{
// Then add the index only
uiIndexes[iIndexCount] = iMatch;
iIndexCount++;
break;
}
}
// No match found, add this vertex to the end of our list, and update the index array
if(iMatch == iLastIndex)
{
// Add data and new index
memcpy(vVerts[iMatch], vertices[face_indicies[iFace][iPoint]], sizeof(float) * 3);
memcpy(vNorms[iMatch], normals[face_indicies[iFace][iPoint+3]], sizeof(float) * 3);
memcpy(vText[iMatch], textures[face_indicies[iFace][iPoint+6]], sizeof(float) * 2);
uiIndexes[iIndexCount] = iLastIndex;
iIndexCount++;
iLastIndex++;
}
}
}
return iIndexCount;
}
/////////////////////////////////////////////
// Function to stitch the triangles together
// and draw the ship
void DrawModel(void)
{
static int iIndexes = 0;
char cBuffer[32];
// The first time this is called, reindex the triangles. Report the results
// in the window title
if(iIndexes == 0)
{
iIndexes = IndexTriangles();
sprintf(cBuffer,"Verts = %d Indexes = %d", iLastIndex, iIndexes);
glutSetWindowTitle(cBuffer);
}
// Use vertices, normals, and texture coordinates
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
// Here's where the data is now
glVertexPointer(3, GL_FLOAT,0, vVerts);
glNormalPointer(GL_FLOAT, 0, vNorms);
glTexCoordPointer(2, GL_FLOAT, 0, vText);
// Draw them
glDrawElements(GL_TRIANGLES, iIndexes, GL_UNSIGNED_SHORT, uiIndexes);
}
在你的情况下很简单
slice slice + 1
*--------*
|\ | stack
| \ |
| \ |
| \ |
| \ |
| \ |
| \ | stack + 1
*------- *
比我们线性化我们的堆叠切片2D坐标
单个1D整个切片coord。 standart algo(1个堆栈包含n个切片)所以我们的算法只是current_stack * n + current_slice
它将在创建的早期数组中为我们提供特定的顶点法线和纹理索引。比你的for循环我们简单地安排它们指定适当的多边形缠绕。
我已经修改了你的代码,现在它以适当的方式绘制圆柱体。
int numVertices = (10000);
float * vertices = new float[numVertices * 3];
float* normals = new float[numVertices * 3];
//float* textures = new float[numVertices * 2];
// vertices body
k = 0;
for (i = 0; i < slices; i++) {
normals[3 * k] = cos(theta * i);
normals[3 * k + 1] = sin(theta * i);
normals[3 * k + 2] = 0;
vertices[3 * k] = radius * normals[3 * k];
vertices[3 * k + 1] = radius * normals[3 * k + 1];
vertices[3 * k + 2] = .5f;
k++;
} // end of for vertices on body
for (i = 0; i < slices; i++) {
normals[3 * k] = cos(theta * i);
normals[3 * k + 1] = sin(theta * i);
normals[3 * k + 2] = 0;
vertices[3 * k] = radius * normals[3 * k];
vertices[3 * k + 1] = radius * normals[3 * k + 1];
vertices[3 * k + 2] = -.5f;
k++;
} // end of for vertices on body
// Generate indices for triangular mesh
int numIndices = 100000;
unsigned int* indices = new unsigned int[numIndices];
k = 0;
for (i = 0; i < slices; ++i) {
int i1 = i;
int i2 = (i1 + 1) % slices;
int i3 = i1 + slices;
int i4 = i2 + slices;
indices[k++] = i1;
indices[k++] = i3;
indices[k++] = i2;
indices[k++] = i4;
indices[k++] = i2;
indices[k++] = i3;
}