我正在设计一个算法来执行以下操作:给定数组A[1... n]
,对于每个i < j
,找到所有反转对,使A[i] > A[j]
。我正在使用合并排序并将数组A复制到数组B,然后比较两个数组,但我很难看到如何使用它来查找反转次数。任何提示或帮助将不胜感激。
答案 0 :(得分:127)
所以这是java中的O(n log n)解决方案。
long merge(int[] arr, int[] left, int[] right) {
int i = 0, j = 0, count = 0;
while (i < left.length || j < right.length) {
if (i == left.length) {
arr[i+j] = right[j];
j++;
} else if (j == right.length) {
arr[i+j] = left[i];
i++;
} else if (left[i] <= right[j]) {
arr[i+j] = left[i];
i++;
} else {
arr[i+j] = right[j];
count += left.length-i;
j++;
}
}
return count;
}
long invCount(int[] arr) {
if (arr.length < 2)
return 0;
int m = (arr.length + 1) / 2;
int left[] = Arrays.copyOfRange(arr, 0, m);
int right[] = Arrays.copyOfRange(arr, m, arr.length);
return invCount(left) + invCount(right) + merge(arr, left, right);
}
这几乎是正常的合并排序,整个魔术隐藏在合并功能中。 请注意,虽然排序算法会删除反转。 虽然合并算法会计算已删除的反转次数(有人可能会说出来)。
删除反转的唯一时刻是算法从数组的右侧获取元素并将其合并到主数组。 此操作删除的反转次数是要合并的左数组剩余的元素数。 :)
希望它足够解释。
答案 1 :(得分:85)
我通过以下方法在O(n * log n)时间内找到了它。
取A [1]并通过二分搜索在排序数组B中找到它的位置。此元素的反转次数将比其在B中的位置的索引号少一个,因为在A的第一个元素之后出现的每个较低的数字都将是反转。
2a上。积累反转数来反算变量num_inversions。
2B。从数组A中删除A [1],并从数组B中的相应位置删除
以下是此算法的示例运行。原始数组A =(6,9,1,14,8,12,3,2)
1:合并排序并复制到数组B
B =(1,2,3,6,8,9,12,14)
2:采用A [1]和二分搜索在数组B中找到它
A [1] = 6
B =(1,2,3, 6 ,8,9,12,14)
6位于阵列B的第4位,因此有3次反转。我们知道这是因为6位于数组A中的第一个位置,因此随后出现在数组A中的任何较低值元素将具有j> 1的索引。我(因为我在这种情况下是1)。
2.b:从数组A中删除A [1],并从数组B中的相应位置删除(粗体元素被删除)。
A =( 6, 9,1,14,8,12,3,2)=(9,1,14,8,12,3,2)
B =(1,2,3, 6, 8,9,12,14)=(1,2,3,8,9,12,14)
3:在新的A和B阵列上从第2步重新运行。
A [1] = 9
B =(1,2,3,8,9,12,14)
9现在位于数组B的第5位,因此有4次反转。我们知道这是因为9位于数组A中的第一个位置,因此随后出现的任何较低值元素将具有j> 1的索引。我(因为我在这种情况下又是1)。 从数组A中删除A [1],并从数组B中的相应位置删除(粗体元素被删除)
A =( 9 ,1,14,8,12,3,2)=(1,14,8,12,3,2)
B =(1,2,3,8, 9 ,12,14)=(1,2,3,8,12,14)
一旦循环完成,继续这样就会给出数组A的反转总数。
步骤1(合并排序)将执行O(n * log n)。 步骤2将执行n次,并且在每次执行时将执行二进制搜索,该搜索使O(log n)运行总共O(n * log n)。因此,总运行时间为O(n * log n)+ O(n * log n)= O(n * log n)。
感谢您的帮助。在一张纸上写出样本数组确实有助于可视化问题。
答案 2 :(得分:44)
我能给予的唯一建议(看起来很像一个家庭作业问题;))首先用一小组数字(例如5)手动完成,然后写下你为解决问题所采取的步骤问题
这应该允许您找出可用于编写代码的通用解决方案。
答案 3 :(得分:26)
在Python中
# O(n log n)
def count_inversion(lst):
return merge_count_inversion(lst)[1]
def merge_count_inversion(lst):
if len(lst) <= 1:
return lst, 0
middle = int( len(lst) / 2 )
left, a = merge_count_inversion(lst[:middle])
right, b = merge_count_inversion(lst[middle:])
result, c = merge_count_split_inversion(left, right)
return result, (a + b + c)
def merge_count_split_inversion(left, right):
result = []
count = 0
i, j = 0, 0
left_len = len(left)
while i < left_len and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
count += left_len - i
j += 1
result += left[i:]
result += right[j:]
return result, count
#test code
input_array_1 = [] #0
input_array_2 = [1] #0
input_array_3 = [1, 5] #0
input_array_4 = [4, 1] #1
input_array_5 = [4, 1, 2, 3, 9] #3
input_array_6 = [4, 1, 3, 2, 9, 5] #5
input_array_7 = [4, 1, 3, 2, 9, 1] #8
print count_inversion(input_array_1)
print count_inversion(input_array_2)
print count_inversion(input_array_3)
print count_inversion(input_array_4)
print count_inversion(input_array_5)
print count_inversion(input_array_6)
print count_inversion(input_array_7)
答案 4 :(得分:21)
我想知道为什么还没有人提到binary-indexed trees。您可以使用一个来维护排列元素值的前缀和。然后你可以从右到左继续计算每个元素的元素数量比右边小:
def count_inversions(a):
res = 0
counts = [0]*(len(a)+1)
rank = { v : i+1 for i, v in enumerate(sorted(a)) }
for x in reversed(a):
i = rank[x] - 1
while i:
res += counts[i]
i -= i & -i
i = rank[x]
while i <= len(a):
counts[i] += 1
i += i & -i
return res
复杂度为O(n log n),常数因子非常低。
答案 5 :(得分:14)
我实际上有一个与家庭作业类似的问题。我被限制为必须具有O(nlogn)效率。
我使用了你提出的使用Mergesort的想法,因为它已经具有正确的效率。我刚刚在合并函数中插入了一些代码,基本上是: 每当将右侧数组中的数字添加到输出数组时,我会添加反转的总数,即左数组中剩余的数字量。
这对我来说很有意义,因为我已经考虑过了。你计算在任何数字之前有多少次数。
第h
答案 6 :(得分:10)
通过分析合并排序中的合并过程可以找到反转次数:
将元素从第二个数组复制到合并数组(此示例中为9)时,它会相对于其他元素保持其位置。将元素从第一个数组复制到合并数组(此处为5)时,它将被反转,所有元素都保留在第二个数组中(2与3和4反转)。因此,合并排序的一点修改可以解决O(n ln n)中的问题 例如,只需取消注释下面mergesort python代码中的两个#行即可获得计数。
def merge(l1,l2):
l = []
# global count
while l1 and l2:
if l1[-1] <= l2[-1]:
l.append(l2.pop())
else:
l.append(l1.pop())
# count += len(l2)
l.reverse()
return l1 + l2 + l
def sort(l):
t = len(l) // 2
return merge(sort(l[:t]), sort(l[t:])) if t > 0 else l
count=0
print(sort([5,1,2,4,9,3]), count)
# [1, 2, 3, 4, 5, 9] 6
编辑1
使用稳定版本的快速排序可以实现相同的任务,已知速度稍快一些:
def part(l):
pivot=l[-1]
small,big = [],[]
count = big_count = 0
for x in l:
if x <= pivot:
small.append(x)
count += big_count
else:
big.append(x)
big_count += 1
return count,small,big
def quick_count(l):
if len(l)<2 : return 0
count,small,big = part(l)
small.pop()
return count + quick_count(small) + quick_count(big)
选择pivot作为最后一个元素,反转计算得很好,执行时间比合并上面的时间好40%。
编辑2
对于python中的性能,numpy&amp; numba版本:
首先是numpy部分,它使用argsort O(n ln n):
def count_inversions(a):
n = a.size
counts = np.arange(n) & -np.arange(n) # The BIT
ags = a.argsort(kind='mergesort')
return BIT(ags,counts,n)
高效BIT approach的numba部分:
@numba.njit
def BIT(ags,counts,n):
res = 0
for x in ags :
i = x
while i:
res += counts[i]
i -= i & -i
i = x+1
while i < n:
counts[i] -= 1
i += i & -i
return res
答案 7 :(得分:8)
请注意,杰弗里欧文的回答是错误的。
数组中的反转次数是必须移动元素的总距离的一半,以便对数组进行排序。因此,可以通过对数组进行排序,维持得到的置换p [i],然后计算abs(p [i] -i)/ 2的和来计算它。这需要O(n log n)时间,这是最佳的。
另一种方法是http://mathworld.wolfram.com/PermutationInversion.html。此方法等于max(0,p [i] -i)之和,它等于abs(p [i] -i])/ 2之和,因为向左移动的总距离等于总距离元素向右移动。
以序列{3,2,1}为例。有三个反转:(3,2),(3,1),(2,1),因此反转数为3.但是,根据引用的方法,答案应为2。
答案 8 :(得分:5)
检查出来:http://www.cs.jhu.edu/~xfliu/600.363_F03/hw_solution/solution1.pdf
我希望它会给你正确答案。
答案 9 :(得分:4)
这是一种可能的二叉树变体解决方案。它为每个树节点添加了一个名为rightSubTreeSize的字段。继续按照它们在数组中出现的顺序将数字插入二叉树中。如果number为节点的lhs,则该元素的反转计数为(1 + rightSubTreeSize)。由于所有这些元素都大于当前元素,因此它们会出现在数组的早期。如果element转到节点的rhs,只需增加它的rightSubTreeSize即可。以下是代码。
Node {
int data;
Node* left, *right;
int rightSubTreeSize;
Node(int data) {
rightSubTreeSize = 0;
}
};
Node* root = null;
int totCnt = 0;
for(i = 0; i < n; ++i) {
Node* p = new Node(a[i]);
if(root == null) {
root = p;
continue;
}
Node* q = root;
int curCnt = 0;
while(q) {
if(p->data <= q->data) {
curCnt += 1 + q->rightSubTreeSize;
if(q->left) {
q = q->left;
} else {
q->left = p;
break;
}
} else {
q->rightSubTreeSize++;
if(q->right) {
q = q->right;
} else {
q->right = p;
break;
}
}
}
totCnt += curCnt;
}
return totCnt;
答案 10 :(得分:3)
public static int mergeSort(int[] a, int p, int r)
{
int countInversion = 0;
if(p < r)
{
int q = (p + r)/2;
countInversion = mergeSort(a, p, q);
countInversion += mergeSort(a, q+1, r);
countInversion += merge(a, p, q, r);
}
return countInversion;
}
public static int merge(int[] a, int p, int q, int r)
{
//p=0, q=1, r=3
int countingInversion = 0;
int n1 = q-p+1;
int n2 = r-q;
int[] temp1 = new int[n1+1];
int[] temp2 = new int[n2+1];
for(int i=0; i<n1; i++) temp1[i] = a[p+i];
for(int i=0; i<n2; i++) temp2[i] = a[q+1+i];
temp1[n1] = Integer.MAX_VALUE;
temp2[n2] = Integer.MAX_VALUE;
int i = 0, j = 0;
for(int k=p; k<=r; k++)
{
if(temp1[i] <= temp2[j])
{
a[k] = temp1[i];
i++;
}
else
{
a[k] = temp2[j];
j++;
countingInversion=countingInversion+(n1-i);
}
}
return countingInversion;
}
public static void main(String[] args)
{
int[] a = {1, 20, 6, 4, 5};
int countInversion = mergeSort(a, 0, a.length-1);
System.out.println(countInversion);
}
答案 11 :(得分:2)
由于这是一个老问题,我将在C中提供我的答案。
#include <stdio.h>
int count = 0;
int inversions(int a[], int len);
void mergesort(int a[], int left, int right);
void merge(int a[], int left, int mid, int right);
int main() {
int a[] = { 1, 5, 2, 4, 0 };
printf("%d\n", inversions(a, 5));
}
int inversions(int a[], int len) {
mergesort(a, 0, len - 1);
return count;
}
void mergesort(int a[], int left, int right) {
if (left < right) {
int mid = (left + right) / 2;
mergesort(a, left, mid);
mergesort(a, mid + 1, right);
merge(a, left, mid, right);
}
}
void merge(int a[], int left, int mid, int right) {
int i = left;
int j = mid + 1;
int k = 0;
int b[right - left + 1];
while (i <= mid && j <= right) {
if (a[i] <= a[j]) {
b[k++] = a[i++];
} else {
printf("right element: %d\n", a[j]);
count += (mid - i + 1);
printf("new count: %d\n", count);
b[k++] = a[j++];
}
}
while (i <= mid)
b[k++] = a[i++];
while (j <= right)
b[k++] = a[j++];
for (i = left, k = 0; i <= right; i++, k++) {
a[i] = b[k];
}
}
答案 12 :(得分:2)
这是c ++解决方案
/**
*array sorting needed to verify if first arrays n'th element is greater than sencond arrays
*some element then all elements following n will do the same
*/
#include<stdio.h>
#include<iostream>
using namespace std;
int countInversions(int array[],int size);
int merge(int arr1[],int size1,int arr2[],int size2,int[]);
int main()
{
int array[] = {2, 4, 1, 3, 5};
int size = sizeof(array) / sizeof(array[0]);
int x = countInversions(array,size);
printf("number of inversions = %d",x);
}
int countInversions(int array[],int size)
{
if(size > 1 )
{
int mid = size / 2;
int count1 = countInversions(array,mid);
int count2 = countInversions(array+mid,size-mid);
int temp[size];
int count3 = merge(array,mid,array+mid,size-mid,temp);
for(int x =0;x<size ;x++)
{
array[x] = temp[x];
}
return count1 + count2 + count3;
}else{
return 0;
}
}
int merge(int arr1[],int size1,int arr2[],int size2,int temp[])
{
int count = 0;
int a = 0;
int b = 0;
int c = 0;
while(a < size1 && b < size2)
{
if(arr1[a] < arr2[b])
{
temp[c] = arr1[a];
c++;
a++;
}else{
temp[c] = arr2[b];
b++;
c++;
count = count + size1 -a;
}
}
while(a < size1)
{
temp[c] = arr1[a];
c++;a++;
}
while(b < size2)
{
temp[c] = arr2[b];
c++;b++;
}
return count;
}
答案 13 :(得分:1)
以下是计数反转的C代码
#include <stdio.h>
#include <stdlib.h>
int _mergeSort(int arr[], int temp[], int left, int right);
int merge(int arr[], int temp[], int left, int mid, int right);
/* This function sorts the input array and returns the
number of inversions in the array */
int mergeSort(int arr[], int array_size)
{
int *temp = (int *)malloc(sizeof(int)*array_size);
return _mergeSort(arr, temp, 0, array_size - 1);
}
/* An auxiliary recursive function that sorts the input array and
returns the number of inversions in the array. */
int _mergeSort(int arr[], int temp[], int left, int right)
{
int mid, inv_count = 0;
if (right > left)
{
/* Divide the array into two parts and call _mergeSortAndCountInv()
for each of the parts */
mid = (right + left)/2;
/* Inversion count will be sum of inversions in left-part, right-part
and number of inversions in merging */
inv_count = _mergeSort(arr, temp, left, mid);
inv_count += _mergeSort(arr, temp, mid+1, right);
/*Merge the two parts*/
inv_count += merge(arr, temp, left, mid+1, right);
}
return inv_count;
}
/* This funt merges two sorted arrays and returns inversion count in
the arrays.*/
int merge(int arr[], int temp[], int left, int mid, int right)
{
int i, j, k;
int inv_count = 0;
i = left; /* i is index for left subarray*/
j = mid; /* i is index for right subarray*/
k = left; /* i is index for resultant merged subarray*/
while ((i <= mid - 1) && (j <= right))
{
if (arr[i] <= arr[j])
{
temp[k++] = arr[i++];
}
else
{
temp[k++] = arr[j++];
/*this is tricky -- see above explanation/diagram for merge()*/
inv_count = inv_count + (mid - i);
}
}
/* Copy the remaining elements of left subarray
(if there are any) to temp*/
while (i <= mid - 1)
temp[k++] = arr[i++];
/* Copy the remaining elements of right subarray
(if there are any) to temp*/
while (j <= right)
temp[k++] = arr[j++];
/*Copy back the merged elements to original array*/
for (i=left; i <= right; i++)
arr[i] = temp[i];
return inv_count;
}
/* Driver progra to test above functions */
int main(int argv, char** args)
{
int arr[] = {1, 20, 6, 4, 5};
printf(" Number of inversions are %d \n", mergeSort(arr, 5));
getchar();
return 0;
}
答案 14 :(得分:1)
这是O(n * log(n))perl实现:
sub sort_and_count {
my ($arr, $n) = @_;
return ($arr, 0) unless $n > 1;
my $mid = $n % 2 == 1 ? ($n-1)/2 : $n/2;
my @left = @$arr[0..$mid-1];
my @right = @$arr[$mid..$n-1];
my ($sleft, $x) = sort_and_count( \@left, $mid );
my ($sright, $y) = sort_and_count( \@right, $n-$mid);
my ($merged, $z) = merge_and_countsplitinv( $sleft, $sright, $n );
return ($merged, $x+$y+$z);
}
sub merge_and_countsplitinv {
my ($left, $right, $n) = @_;
my ($l_c, $r_c) = ($#$left+1, $#$right+1);
my ($i, $j) = (0, 0);
my @merged;
my $inv = 0;
for my $k (0..$n-1) {
if ($i<$l_c && $j<$r_c) {
if ( $left->[$i] < $right->[$j]) {
push @merged, $left->[$i];
$i+=1;
} else {
push @merged, $right->[$j];
$j+=1;
$inv += $l_c - $i;
}
} else {
if ($i>=$l_c) {
push @merged, @$right[ $j..$#$right ];
} else {
push @merged, @$left[ $i..$#$left ];
}
last;
}
}
return (\@merged, $inv);
}
答案 15 :(得分:1)
我在Python中的回答:
1-首先对阵列进行排序并制作副本。在我的程序中,B代表排序的数组。 2-迭代原始数组(未排序),并在排序列表中查找该元素的索引。还要记下元素的索引。 3-确保元素没有任何重复项,如果有,则需要将索引值更改为-1。我的程序中的while条件正是这样做的。 4-继续计算索引值的反转,并在计算出反转后删除元素。
def binarySearch(alist, item):
first = 0
last = len(alist) - 1
found = False
while first <= last and not found:
midpoint = (first + last)//2
if alist[midpoint] == item:
return midpoint
else:
if item < alist[midpoint]:
last = midpoint - 1
else:
first = midpoint + 1
def solution(A):
B = list(A)
B.sort()
inversion_count = 0
for i in range(len(A)):
j = binarySearch(B, A[i])
while B[j] == B[j - 1]:
if j < 1:
break
j -= 1
inversion_count += j
B.pop(j)
if inversion_count > 1000000000:
return -1
else:
return inversion_count
print solution([4, 10, 11, 1, 3, 9, 10])
答案 16 :(得分:1)
O(n log n)时间,java中的O(n)空间解决方案。
一个mergesort,通过调整来保留合并步骤中执行的反转次数。 (对于一个解释良好的mergesort,请查看http://www.vogella.com/tutorials/JavaAlgorithmsMergesort/article.html)
由于mergesort可以就位,因此空间复杂度可以提高到O(1)。
当使用这种排序时,反转仅在合并步骤中发生,并且仅当我们必须将第二部分的元素放在前半部分的元素之前时,例如,
与
合并我们有3 + 2 + 0 = 5次反转:
在我们进行了5次反演之后,我们的新合并列表就是 0,1,5,6,10,15,22
Codility上有一个名为ArrayInversionCount的演示任务,您可以在其中测试您的解决方案。
public class FindInversions {
public static int solution(int[] input) {
if (input == null)
return 0;
int[] helper = new int[input.length];
return mergeSort(0, input.length - 1, input, helper);
}
public static int mergeSort(int low, int high, int[] input, int[] helper) {
int inversionCount = 0;
if (low < high) {
int medium = low + (high - low) / 2;
inversionCount += mergeSort(low, medium, input, helper);
inversionCount += mergeSort(medium + 1, high, input, helper);
inversionCount += merge(low, medium, high, input, helper);
}
return inversionCount;
}
public static int merge(int low, int medium, int high, int[] input, int[] helper) {
int inversionCount = 0;
for (int i = low; i <= high; i++)
helper[i] = input[i];
int i = low;
int j = medium + 1;
int k = low;
while (i <= medium && j <= high) {
if (helper[i] <= helper[j]) {
input[k] = helper[i];
i++;
} else {
input[k] = helper[j];
// the number of elements in the first half which the j element needs to jump over.
// there is an inversion between each of those elements and j.
inversionCount += (medium + 1 - i);
j++;
}
k++;
}
// finish writing back in the input the elements from the first part
while (i <= medium) {
input[k] = helper[i];
i++;
k++;
}
return inversionCount;
}
}
答案 17 :(得分:1)
我有一个不同的解决方案,但我担心这只适用于不同的数组元素。
//Code
#include <bits/stdc++.h>
using namespace std;
int main()
{
int i,n;
cin >> n;
int arr[n],inv[n];
for(i=0;i<n;i++){
cin >> arr[i];
}
vector<int> v;
v.push_back(arr[n-1]);
inv[n-1]=0;
for(i=n-2;i>=0;i--){
auto it = lower_bound(v.begin(),v.end(),arr[i]);
//calculating least element in vector v which is greater than arr[i]
inv[i]=it-v.begin();
//calculating distance from starting of vector
v.insert(it,arr[i]);
//inserting that element into vector v
}
for(i=0;i<n;i++){
cout << inv[i] << " ";
}
cout << endl;
return 0;
}
为了解释我的代码,我们继续在Array的末尾添加元素。对于任何传入的数组元素,我们在向量v中找到第一个元素的索引,它大于我们的传入元素并分配将值转换为传入元素索引的反转计数。之后,我们将该元素插入到向量v的正确位置,使得向量v按排序顺序保留。
//INPUT
4
2 1 4 3
//OUTPUT
1 0 1 0
//To calculate total inversion count just add up all the elements in output array
答案 18 :(得分:1)
另一种Python解决方案,简称。使用内置bisect模块,它提供了将元素插入到排序数组中的位置并在排序数组中查找元素索引的函数。
这个想法是将第n个左边的元素存储在这样的数组中,这样我们就可以很容易地找到它们的数量大于第n个。
import bisect
def solution(A):
sorted_left = []
res = 0
for i in xrange(1, len(A)):
bisect.insort_left(sorted_left, A[i-1])
# i is also the length of sorted_left
res += (i - bisect.bisect(sorted_left, A[i]))
return res
答案 19 :(得分:0)
简单的O(n ^ 2)答案是使用嵌套的for循环并为每个反转增加一个计数器
int counter = 0;
for(int i = 0; i < n - 1; i++)
{
for(int j = i+1; j < n; j++)
{
if( A[i] > A[j] )
{
counter++;
}
}
}
return counter;
现在我想你想要一个更有效的解决方案,我会考虑它。
答案 20 :(得分:0)
解决方案一。大量数字时工作良好
def countInversions(arr):
n = len(arr)
if n == 1:
return 0
n1 = n // 2
n2 = n - n1
arr1 = arr[:n1]
arr2 = arr[n1:]
# print(n1,'||',n1,'||',arr1,'||',arr2)
ans = countInversions(arr1) + countInversions(arr2)
print(ans)
i1 = 0
i2 = 0
for i in range(n):
# print(i1,n1,i2,n2)
if i1 < n1 and (i2 >= n2 or arr1[i1] <= arr2[i2]):
arr[i] = arr1[i1]
ans += i2
i1 += 1
elif i2 < n2:
arr[i] = arr2[i2]
i2 += 1
return ans
解决方案二。简单的解决方案。
def countInversions(arr):
count = 0
for i in range(len(arr)):
for j in range(i, len(arr)):
# print(arr[i:len(arr)])
if arr[i] > arr[j]:
print(arr[i], arr[j])
count += 1
print(count)
答案 21 :(得分:0)
最佳优化方式是通过合并排序解决它,合并自身我们可以通过比较左右数组来检查需要多少次反转。每当左数组中的元素大于右数组中的元素时,它将是反转的。
合并排序方法: -
这是代码。代码与合并排序完全相同,除了mergeToParent
方法下的代码片段,我在(left[leftunPicked] < right[rightunPicked])
public class TestInversionThruMergeSort {
static int count =0;
public static void main(String[] args) {
int[] arr = {6, 9, 1, 14, 8, 12, 3, 2};
partition(arr);
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
System.out.println("inversions are "+count);
}
public static void partition(int[] arr) {
if (arr.length > 1) {
int mid = (arr.length) / 2;
int[] left = null;
if (mid > 0) {
left = new int[mid];
for (int i = 0; i < mid; i++) {
left[i] = arr[i];
}
}
int[] right = new int[arr.length - left.length];
if ((arr.length - left.length) > 0) {
int j = 0;
for (int i = mid; i < arr.length; i++) {
right[j] = arr[i];
++j;
}
}
partition(left);
partition(right);
mergeToParent(left, right, arr);
}
}
public static void mergeToParent(int[] left, int[] right, int[] parent) {
int leftunPicked = 0;
int rightunPicked = 0;
int parentIndex = -1;
while (rightunPicked < right.length && leftunPicked < left.length) {
if (left[leftunPicked] < right[rightunPicked]) {
parent[++parentIndex] = left[leftunPicked];
++leftunPicked;
} else {
count = count + left.length-leftunPicked;
if ((rightunPicked < right.length)) {
parent[++parentIndex] = right[rightunPicked];
++rightunPicked;
}
}
}
while (leftunPicked < left.length) {
parent[++parentIndex] = left[leftunPicked];
++leftunPicked;
}
while (rightunPicked < right.length) {
parent[++parentIndex] = right[rightunPicked];
++rightunPicked;
}
}
}
我们可以将输入数组与排序数组进行比较的另一种方法: - 这个暗黑破坏神的实施答案。虽然这不应该是首选方法,因为从数组或列表中删除n个元素是log(n ^ 2)。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
public class TestInversion {
public static void main(String[] args) {
Integer [] arr1 = {6, 9, 1, 14, 8, 12, 3, 2};
List<Integer> arr = new ArrayList(Arrays.asList(arr1));
List<Integer> sortArr = new ArrayList<Integer>();
for(int i=0;i<arr.size();i++){
sortArr.add(arr.get(i));
}
Collections.sort(sortArr);
int inversion = 0;
Iterator<Integer> iter = arr.iterator();
while(iter.hasNext()){
Integer el = (Integer)iter.next();
int index = sortArr.indexOf(el);
if(index+1 > 1){
inversion = inversion + ((index+1)-1);
}
//iter.remove();
sortArr.remove(el);
}
System.out.println("Inversions are "+inversion);
}
}
答案 22 :(得分:0)
大小n
列表可能的最大反转次数可以通过表达式进行推广:
maxPossibleInversions = (n * (n-1) ) / 2
因此,对于大小为6
的数组,最大可能的反转将等于15
。
为了实现n logn
的复杂性,我们可以在合并排序中捎带反演算法。
以下是一般化步骤:
inversionCount += leftSubArray.length
那就是它!
这是一个简单的例子,我使用Javascript:
var arr = [6,5,4,3,2,1]; // Sample input array
var inversionCount = 0;
function mergeSort(arr) {
if(arr.length == 1)
return arr;
if(arr.length > 1) {
let breakpoint = Math.ceil((arr.length/2));
// Left list starts with 0, breakpoint-1
let leftList = arr.slice(0,breakpoint);
// Right list starts with breakpoint, length-1
let rightList = arr.slice(breakpoint,arr.length);
// Make a recursive call
leftList = mergeSort(leftList);
rightList = mergeSort(rightList);
var a = merge(leftList,rightList);
return a;
}
}
function merge(leftList,rightList) {
let result = [];
while(leftList.length && rightList.length) {
/**
* The shift() method removes the first element from an array
* and returns that element. This method changes the length
* of the array.
*/
if(leftList[0] <= rightList[0]) {
result.push(leftList.shift());
}else{
inversionCount += leftList.length;
result.push(rightList.shift());
}
}
while(leftList.length)
result.push(leftList.shift());
while(rightList.length)
result.push(rightList.shift());
console.log(result);
return result;
}
mergeSort(arr);
console.log('Number of inversions: ' + inversionCount);
答案 23 :(得分:0)
在Swift中使用合并排序计算数组中的反转的实现:
请注意,掉期数量增加
nSwaps += mid + 1 - iL
(这是数组左侧的相对长度减去左侧当前元素的索引)
...因为这是元素右侧元素必须跳过(反转次数)才能排序的元素数。
func merge(arr: inout [Int], arr2: inout [Int], low: Int, mid: Int, high: Int) -> Int {
var nSwaps = 0;
var i = low;
var iL = low;
var iR = mid + 1;
while iL <= mid && iR <= high {
if arr2[iL] <= arr2[iR] {
arr[i] = arr2[iL]
iL += 1
i += 1
} else {
arr[i] = arr2[iR]
nSwaps += mid + 1 - iL
iR += 1
i += 1
}
}
while iL <= mid {
arr[i] = arr2[iL]
iL += 1
i += 1
}
while iR <= high {
arr[i] = arr2[iR]
iR += 1
i += 1
}
return nSwaps
}
func mergeSort(arr: inout [Int]) -> Int {
var arr2 = arr
let nSwaps = mergeSort(arr: &arr, arr2: &arr2, low: 0, high: arr.count-1)
return nSwaps
}
func mergeSort(arr: inout [Int], arr2: inout [Int], low: Int, high: Int) -> Int {
if low >= high {
return 0
}
let mid = low + ((high - low) / 2)
var nSwaps = 0;
nSwaps += mergeSort(arr: &arr2, arr2: &arr, low: low, high: mid)
nSwaps += mergeSort(arr: &arr2, arr2: &arr, low: mid+1, high: high)
nSwaps += merge(arr: &arr, arr2: &arr2, low: low, mid: mid, high: high)
return nSwaps
}
var arrayToSort: [Int] = [2, 1, 3, 1, 2]
let nSwaps = mergeSort(arr: &arrayToSort)
print(arrayToSort) // [1, 1, 2, 2, 3]
print(nSwaps) // 4
答案 24 :(得分:0)
此答案包含main answer中代码生成的timeit
测试的结果。有关详细信息,请参阅该答案!
count_inversions speed test results
Size = 5, hi = 2, 4096 loops
ltree_count_PM2R : 0.04871, 0.04872, 0.04876
bruteforce_loops_PM2R : 0.05696, 0.05700, 0.05776
solution_TimBabych : 0.05760, 0.05822, 0.05943
solutionE_TimBabych : 0.06642, 0.06704, 0.06760
bruteforce_sum_PM2R : 0.07523, 0.07545, 0.07563
perm_sum_PM2R : 0.09873, 0.09875, 0.09935
rank_sum_PM2R : 0.10449, 0.10463, 0.10468
solution_python : 0.13034, 0.13061, 0.13221
fenwick_inline_PM2R : 0.14323, 0.14610, 0.18802
perm_radixR_PM2R : 0.15146, 0.15203, 0.15235
merge_count_BM : 0.16179, 0.16267, 0.16467
perm_radixI_PM2R : 0.16200, 0.16202, 0.16768
perm_fenwick_PM2R : 0.16887, 0.16920, 0.17075
merge_PM2R : 0.18262, 0.18271, 0.18418
count_inversions_NiklasB : 0.19183, 0.19279, 0.20388
count_inversion_mkso : 0.20060, 0.20141, 0.20398
inv_cnt_ZheHu : 0.20815, 0.20841, 0.20906
fenwick_PM2R : 0.22109, 0.22137, 0.22379
reversePairs_nomanpouigt : 0.29620, 0.29689, 0.30293
Value: 5
Size = 10, hi = 5, 2048 loops
solution_TimBabych : 0.05954, 0.05989, 0.05991
solutionE_TimBabych : 0.05970, 0.05972, 0.05998
perm_sum_PM2R : 0.07517, 0.07519, 0.07520
ltree_count_PM2R : 0.07672, 0.07677, 0.07684
bruteforce_loops_PM2R : 0.07719, 0.07724, 0.07817
rank_sum_PM2R : 0.08587, 0.08823, 0.08864
bruteforce_sum_PM2R : 0.09470, 0.09472, 0.09484
solution_python : 0.13126, 0.13154, 0.13185
perm_radixR_PM2R : 0.14239, 0.14320, 0.14474
perm_radixI_PM2R : 0.14632, 0.14669, 0.14679
fenwick_inline_PM2R : 0.16796, 0.16831, 0.17030
perm_fenwick_PM2R : 0.18189, 0.18212, 0.18638
merge_count_BM : 0.19816, 0.19870, 0.19948
count_inversions_NiklasB : 0.21807, 0.22031, 0.22215
merge_PM2R : 0.22037, 0.22048, 0.26106
fenwick_PM2R : 0.24290, 0.24314, 0.24744
count_inversion_mkso : 0.24895, 0.24899, 0.25205
inv_cnt_ZheHu : 0.26253, 0.26259, 0.26590
reversePairs_nomanpouigt : 0.35711, 0.35762, 0.35973
Value: 20
Size = 20, hi = 10, 1024 loops
solutionE_TimBabych : 0.05687, 0.05696, 0.05720
solution_TimBabych : 0.06126, 0.06151, 0.06168
perm_sum_PM2R : 0.06875, 0.06906, 0.07054
rank_sum_PM2R : 0.07988, 0.07995, 0.08002
ltree_count_PM2R : 0.11232, 0.11239, 0.11257
bruteforce_loops_PM2R : 0.12553, 0.12584, 0.12592
solution_python : 0.13472, 0.13540, 0.13694
bruteforce_sum_PM2R : 0.15820, 0.15849, 0.16021
perm_radixI_PM2R : 0.17101, 0.17148, 0.17229
perm_radixR_PM2R : 0.17891, 0.18087, 0.18366
perm_fenwick_PM2R : 0.20554, 0.20708, 0.21412
fenwick_inline_PM2R : 0.21161, 0.21163, 0.22047
merge_count_BM : 0.24125, 0.24261, 0.24565
count_inversions_NiklasB : 0.25712, 0.25754, 0.25778
merge_PM2R : 0.26477, 0.26566, 0.31297
fenwick_PM2R : 0.28178, 0.28216, 0.29069
count_inversion_mkso : 0.30286, 0.30290, 0.30652
inv_cnt_ZheHu : 0.32024, 0.32041, 0.32447
reversePairs_nomanpouigt : 0.45812, 0.45822, 0.46172
Value: 98
Size = 40, hi = 20, 512 loops
solutionE_TimBabych : 0.05784, 0.05787, 0.05958
solution_TimBabych : 0.06452, 0.06475, 0.06479
perm_sum_PM2R : 0.07254, 0.07261, 0.07263
rank_sum_PM2R : 0.08537, 0.08540, 0.08572
ltree_count_PM2R : 0.11744, 0.11749, 0.11792
solution_python : 0.14262, 0.14285, 0.14465
perm_radixI_PM2R : 0.18774, 0.18776, 0.18922
perm_radixR_PM2R : 0.19425, 0.19435, 0.19609
bruteforce_loops_PM2R : 0.21500, 0.21511, 0.21686
perm_fenwick_PM2R : 0.23338, 0.23375, 0.23674
fenwick_inline_PM2R : 0.24947, 0.24958, 0.25189
bruteforce_sum_PM2R : 0.27627, 0.27646, 0.28041
merge_count_BM : 0.28059, 0.28128, 0.28294
count_inversions_NiklasB : 0.28557, 0.28759, 0.29022
merge_PM2R : 0.29886, 0.29928, 0.30317
fenwick_PM2R : 0.30241, 0.30259, 0.35237
count_inversion_mkso : 0.34252, 0.34356, 0.34441
inv_cnt_ZheHu : 0.37468, 0.37569, 0.37847
reversePairs_nomanpouigt : 0.50725, 0.50770, 0.50943
Value: 369
Size = 80, hi = 40, 256 loops
solutionE_TimBabych : 0.06339, 0.06373, 0.06513
solution_TimBabych : 0.06984, 0.06994, 0.07009
perm_sum_PM2R : 0.09171, 0.09172, 0.09186
rank_sum_PM2R : 0.10468, 0.10474, 0.10500
ltree_count_PM2R : 0.14416, 0.15187, 0.18541
solution_python : 0.17415, 0.17423, 0.17451
perm_radixI_PM2R : 0.20676, 0.20681, 0.20936
perm_radixR_PM2R : 0.21671, 0.21695, 0.21736
perm_fenwick_PM2R : 0.26197, 0.26252, 0.26264
fenwick_inline_PM2R : 0.28111, 0.28249, 0.28382
count_inversions_NiklasB : 0.31746, 0.32448, 0.32451
merge_count_BM : 0.31964, 0.33842, 0.35276
merge_PM2R : 0.32890, 0.32941, 0.33322
fenwick_PM2R : 0.34355, 0.34377, 0.34873
count_inversion_mkso : 0.37689, 0.37698, 0.38079
inv_cnt_ZheHu : 0.42923, 0.42941, 0.43249
bruteforce_loops_PM2R : 0.43544, 0.43601, 0.43902
bruteforce_sum_PM2R : 0.52106, 0.52160, 0.52531
reversePairs_nomanpouigt : 0.57805, 0.58156, 0.58252
Value: 1467
Size = 160, hi = 80, 128 loops
solutionE_TimBabych : 0.06766, 0.06784, 0.06963
solution_TimBabych : 0.07433, 0.07489, 0.07516
perm_sum_PM2R : 0.13143, 0.13175, 0.13179
rank_sum_PM2R : 0.14428, 0.14440, 0.14922
solution_python : 0.20072, 0.20076, 0.20084
ltree_count_PM2R : 0.20314, 0.20583, 0.24776
perm_radixI_PM2R : 0.23061, 0.23078, 0.23525
perm_radixR_PM2R : 0.23894, 0.23915, 0.24234
perm_fenwick_PM2R : 0.30984, 0.31181, 0.31503
fenwick_inline_PM2R : 0.31933, 0.32680, 0.32722
merge_count_BM : 0.36003, 0.36387, 0.36409
count_inversions_NiklasB : 0.36796, 0.36814, 0.37106
merge_PM2R : 0.36847, 0.36848, 0.37127
fenwick_PM2R : 0.37833, 0.37847, 0.38095
count_inversion_mkso : 0.42746, 0.42747, 0.43184
inv_cnt_ZheHu : 0.48969, 0.48974, 0.49293
reversePairs_nomanpouigt : 0.67791, 0.68157, 0.72420
bruteforce_loops_PM2R : 0.82816, 0.83175, 0.83282
bruteforce_sum_PM2R : 1.03322, 1.03378, 1.03562
Value: 6194
Size = 320, hi = 160, 64 loops
solutionE_TimBabych : 0.07467, 0.07470, 0.07483
solution_TimBabych : 0.08036, 0.08066, 0.08077
perm_sum_PM2R : 0.21142, 0.21201, 0.25766
solution_python : 0.22410, 0.22644, 0.22897
rank_sum_PM2R : 0.22820, 0.22851, 0.22877
ltree_count_PM2R : 0.24424, 0.24595, 0.24645
perm_radixI_PM2R : 0.25690, 0.25710, 0.26191
perm_radixR_PM2R : 0.26501, 0.26504, 0.26729
perm_fenwick_PM2R : 0.33483, 0.33507, 0.33845
fenwick_inline_PM2R : 0.34413, 0.34484, 0.35153
merge_count_BM : 0.39875, 0.39919, 0.40302
fenwick_PM2R : 0.40434, 0.40439, 0.40845
merge_PM2R : 0.40814, 0.41531, 0.51417
count_inversions_NiklasB : 0.41681, 0.42009, 0.42128
count_inversion_mkso : 0.47132, 0.47192, 0.47385
inv_cnt_ZheHu : 0.54468, 0.54750, 0.54893
reversePairs_nomanpouigt : 0.76164, 0.76389, 0.80357
bruteforce_loops_PM2R : 1.59125, 1.60430, 1.64131
bruteforce_sum_PM2R : 2.03734, 2.03834, 2.03975
Value: 24959
Run 2
Size = 640, hi = 320, 8 loops
solutionE_TimBabych : 0.04135, 0.04374, 0.04575
ltree_count_PM2R : 0.06738, 0.06758, 0.06874
perm_radixI_PM2R : 0.06928, 0.06943, 0.07019
fenwick_inline_PM2R : 0.07850, 0.07856, 0.08059
perm_fenwick_PM2R : 0.08151, 0.08162, 0.08170
perm_sum_PM2R : 0.09122, 0.09133, 0.09221
rank_sum_PM2R : 0.09549, 0.09603, 0.11270
merge_count_BM : 0.10733, 0.10807, 0.11032
count_inversions_NiklasB : 0.12460, 0.19865, 0.20205
solution_python : 0.13514, 0.13585, 0.13814
Size = 1280, hi = 640, 8 loops
solutionE_TimBabych : 0.04714, 0.04742, 0.04752
perm_radixI_PM2R : 0.15325, 0.15388, 0.15525
solution_python : 0.15709, 0.15715, 0.16076
fenwick_inline_PM2R : 0.16048, 0.16160, 0.16403
ltree_count_PM2R : 0.16213, 0.16238, 0.16428
perm_fenwick_PM2R : 0.16408, 0.16416, 0.16449
count_inversions_NiklasB : 0.19755, 0.19833, 0.19897
merge_count_BM : 0.23736, 0.23793, 0.23912
perm_sum_PM2R : 0.32946, 0.32969, 0.33277
rank_sum_PM2R : 0.34637, 0.34756, 0.34858
Size = 2560, hi = 1280, 8 loops
solutionE_TimBabych : 0.10898, 0.11005, 0.11025
perm_radixI_PM2R : 0.33345, 0.33352, 0.37656
ltree_count_PM2R : 0.34670, 0.34786, 0.34833
perm_fenwick_PM2R : 0.34816, 0.34879, 0.35214
fenwick_inline_PM2R : 0.36196, 0.36455, 0.36741
solution_python : 0.36498, 0.36637, 0.40887
count_inversions_NiklasB : 0.42274, 0.42745, 0.42995
merge_count_BM : 0.50799, 0.50898, 0.50917
perm_sum_PM2R : 1.27773, 1.27897, 1.27951
rank_sum_PM2R : 1.29728, 1.30389, 1.30448
Size = 5120, hi = 2560, 8 loops
solutionE_TimBabych : 0.26914, 0.26993, 0.27253
perm_radixI_PM2R : 0.71416, 0.71634, 0.71753
perm_fenwick_PM2R : 0.71976, 0.72078, 0.72078
fenwick_inline_PM2R : 0.72776, 0.72804, 0.73143
ltree_count_PM2R : 0.81972, 0.82043, 0.82290
solution_python : 0.83714, 0.83756, 0.83962
count_inversions_NiklasB : 0.87282, 0.87395, 0.92087
merge_count_BM : 1.09496, 1.09584, 1.10207
rank_sum_PM2R : 5.02564, 5.06277, 5.06666
perm_sum_PM2R : 5.09088, 5.12999, 5.13512
Size = 10240, hi = 5120, 8 loops
solutionE_TimBabych : 0.71556, 0.71718, 0.72201
perm_radixI_PM2R : 1.54785, 1.55096, 1.55515
perm_fenwick_PM2R : 1.55103, 1.55353, 1.59298
fenwick_inline_PM2R : 1.57118, 1.57240, 1.57271
ltree_count_PM2R : 1.76240, 1.76247, 1.80944
count_inversions_NiklasB : 1.86543, 1.86851, 1.87208
solution_python : 2.01490, 2.01519, 2.06423
merge_count_BM : 2.35215, 2.35301, 2.40023
rank_sum_PM2R : 20.07048, 20.08399, 20.13200
perm_sum_PM2R : 20.10187, 20.12551, 20.12683
Run 3
Size = 20480, hi = 10240, 4 loops
solutionE_TimBabych : 1.07636, 1.08243, 1.09569
perm_radixI_PM2R : 1.59579, 1.60519, 1.61785
perm_fenwick_PM2R : 1.66885, 1.68549, 1.71109
fenwick_inline_PM2R : 1.72073, 1.72752, 1.77217
ltree_count_PM2R : 1.96900, 1.97820, 2.02578
count_inversions_NiklasB : 2.03257, 2.05005, 2.18548
merge_count_BM : 2.46768, 2.47377, 2.52133
solution_python : 2.49833, 2.50179, 3.79819
Size = 40960, hi = 20480, 4 loops
solutionE_TimBabych : 3.51733, 3.52008, 3.56996
perm_radixI_PM2R : 3.51736, 3.52365, 3.56459
perm_fenwick_PM2R : 3.76097, 3.80900, 3.87974
fenwick_inline_PM2R : 3.95099, 3.96300, 3.99748
ltree_count_PM2R : 4.49866, 4.54652, 5.39716
count_inversions_NiklasB : 4.61851, 4.64303, 4.73026
merge_count_BM : 5.31945, 5.35378, 5.35951
solution_python : 6.78756, 6.82911, 6.98217
Size = 81920, hi = 40960, 4 loops
perm_radixI_PM2R : 7.68723, 7.71986, 7.72135
perm_fenwick_PM2R : 8.52404, 8.53349, 8.53710
fenwick_inline_PM2R : 8.97082, 8.97561, 8.98347
ltree_count_PM2R : 10.01142, 10.01426, 10.03216
count_inversions_NiklasB : 10.60807, 10.62424, 10.70425
merge_count_BM : 11.42149, 11.42342, 11.47003
solutionE_TimBabych : 12.83390, 12.83485, 12.89747
solution_python : 19.66092, 19.67067, 20.72204
Size = 163840, hi = 81920, 4 loops
perm_radixI_PM2R : 17.14153, 17.16885, 17.22240
perm_fenwick_PM2R : 19.25944, 19.27844, 20.27568
fenwick_inline_PM2R : 19.78221, 19.80219, 19.80766
ltree_count_PM2R : 22.42240, 22.43259, 22.48837
count_inversions_NiklasB : 22.97341, 23.01516, 23.98052
merge_count_BM : 24.42683, 24.48559, 24.51488
solutionE_TimBabych : 60.96006, 61.20145, 63.71835
solution_python : 73.75132, 73.79854, 73.95874
Size = 327680, hi = 163840, 4 loops
perm_radixI_PM2R : 36.56715, 36.60221, 37.05071
perm_fenwick_PM2R : 42.21616, 42.21838, 42.26053
fenwick_inline_PM2R : 43.04987, 43.09075, 43.13287
ltree_count_PM2R : 49.87400, 50.08509, 50.69292
count_inversions_NiklasB : 50.74591, 50.75012, 50.75551
merge_count_BM : 52.37284, 52.51491, 53.43003
solutionE_TimBabych : 373.67198, 377.03341, 377.42360
solution_python : 411.69178, 411.92691, 412.83856
Size = 655360, hi = 327680, 4 loops
perm_radixI_PM2R : 78.51927, 78.66327, 79.46325
perm_fenwick_PM2R : 90.64711, 90.80328, 91.76126
fenwick_inline_PM2R : 93.32482, 93.39086, 94.28880
count_inversions_NiklasB : 107.74393, 107.80036, 108.71443
ltree_count_PM2R : 109.11328, 109.23592, 110.18247
merge_count_BM : 111.05633, 111.07840, 112.05861
solutionE_TimBabych : 1830.46443, 1836.39960, 1849.53918
solution_python : 1911.03692, 1912.04484, 1914.69786
答案 25 :(得分:0)
大多数答案都基于MergeSort
,但这并不是解决问题的唯一方法是在O(nlogn)
我将讨论几种方法。
使用Balanced Binary Search Tree
这样的事情。
Node *insert(Node* root, int data, int& count){
if(!root) return new Node(data);
if(root->data == data){
root->freq++;
count += getSize(root->right);
}
else if(root->data > data){
count += getSize(root->right) + root->freq;
root->left = insert(root->left, data, count);
}
else root->right = insert(root->right, data, count);
return balance(root);
}
int getCount(int *a, int n){
int c = 0;
Node *root = NULL;
for(auto i=0; i<n; i++) root = insert(root, a[i], c);
return c;
}
Binary Indexed Tree
int getInversions(int[] a) {
int n = a.length, inversions = 0;
int[] bit = new int[n+1];
compress(a);
BIT b = new BIT();
for (int i=n-1; i>=0; i--) {
inversions += b.getSum(bit, a[i] - 1);
b.update(bit, n, a[i], 1);
}
return inversions;
}
Segment Tree
[0, a[i]-1]
之间进行查询并更新a[i] with 1
int getInversions(int *a, int n) {
int N = n + 1, c = 0;
compress(a, n);
int tree[N<<1] = {0};
for (int i=n-1; i>=0; i--) {
c+= query(tree, N, 0, a[i] - 1);
update(tree, N, a[i], 1);
}
return c;
}
此外,在使用BIT
或Segment-Tree
时,一个好主意是进行Coordinate compression
void compress(int *a, int n) {
int temp[n];
for (int i=0; i<n; i++) temp[i] = a[i];
sort(temp, temp+n);
for (int i=0; i<n; i++) a[i] = lower_bound(temp, temp+n, a[i]) - temp + 1;
}
答案 26 :(得分:0)
C ++Θ(n lg n)带有对的印刷的溶液,其构成反转计数。
int merge(vector<int>&nums , int low , int mid , int high){
int size1 = mid - low +1;
int size2= high - mid;
vector<int>left;
vector<int>right;
for(int i = 0 ; i < size1 ; ++i){
left.push_back(nums[low+i]);
}
for(int i = 0 ; i <size2 ; ++i){
right.push_back(nums[mid+i+1]);
}
left.push_back(INT_MAX);
right.push_back(INT_MAX);
int i = 0 ;
int j = 0;
int start = low;
int inversion = 0 ;
while(i < size1 && j < size2){
if(left[i]<right[j]){
nums[start] = left[i];
start++;
i++;
}else{
for(int l = i ; l < size1; ++l){
cout<<"("<<left[l]<<","<<right[j]<<")"<<endl;
}
inversion += size1 - i;
nums[start] = right[j];
start++;
j++;
}
}
if(i == size1){
for(int c = j ; c< size2 ; ++c){
nums[start] = right[c];
start++;
}
}
if(j == size2){
for(int c = i ; c< size1 ; ++c){
nums[start] = left[c];
start++;
}
}
return inversion;
}
int inversion_count(vector<int>& nums , int low , int high){
if(high>low){
int mid = low + (high-low)/2;
int left = inversion_count(nums,low,mid);
int right = inversion_count(nums,mid+1,high);
int inversion = merge(nums,low,mid,high) + left + right;
return inversion;
}
return 0 ;
}
答案 27 :(得分:0)
这是我在Ruby中的O(n log n)解决方案:
def solution(t)
sorted, inversion_count = sort_inversion_count(t)
return inversion_count
end
def sort_inversion_count(t)
midpoint = t.length / 2
left_half = t[0...midpoint]
right_half = t[midpoint..t.length]
if midpoint == 0
return t, 0
end
sorted_left_half, left_half_inversion_count = sort_inversion_count(left_half)
sorted_right_half, right_half_inversion_count = sort_inversion_count(right_half)
sorted = []
inversion_count = 0
while sorted_left_half.length > 0 or sorted_right_half.length > 0
if sorted_left_half.empty?
sorted.push sorted_right_half.shift
elsif sorted_right_half.empty?
sorted.push sorted_left_half.shift
else
if sorted_left_half[0] > sorted_right_half[0]
inversion_count += sorted_left_half.length
sorted.push sorted_right_half.shift
else
sorted.push sorted_left_half.shift
end
end
end
return sorted, inversion_count + left_half_inversion_count + right_half_inversion_count
end
以及一些测试用例:
require "minitest/autorun"
class TestCodility < Minitest::Test
def test_given_example
a = [-1, 6, 3, 4, 7, 4]
assert_equal solution(a), 4
end
def test_empty
a = []
assert_equal solution(a), 0
end
def test_singleton
a = [0]
assert_equal solution(a), 0
end
def test_none
a = [1,2,3,4,5,6,7]
assert_equal solution(a), 0
end
def test_all
a = [5,4,3,2,1]
assert_equal solution(a), 10
end
def test_clones
a = [4,4,4,4,4,4]
assert_equal solution(a), 0
end
end
答案 28 :(得分:0)
满足O(N * log(N))时间复杂度要求的C ++中一种可能的解决方案如下:
#include <algorithm>
vector<int> merge(vector<int>left, vector<int>right, int &counter)
{
vector<int> result;
vector<int>::iterator it_l=left.begin();
vector<int>::iterator it_r=right.begin();
int index_left=0;
while(it_l!=left.end() || it_r!=right.end())
{
// the following is true if we are finished with the left vector
// OR if the value in the right vector is the smaller one.
if(it_l==left.end() || (it_r!=right.end() && *it_r<*it_l) )
{
result.push_back(*it_r);
it_r++;
// increase inversion counter
counter+=left.size()-index_left;
}
else
{
result.push_back(*it_l);
it_l++;
index_left++;
}
}
return result;
}
vector<int> merge_sort_and_count(vector<int> A, int &counter)
{
int N=A.size();
if(N==1)return A;
vector<int> left(A.begin(),A.begin()+N/2);
vector<int> right(A.begin()+N/2,A.end());
left=merge_sort_and_count(left,counter);
right=merge_sort_and_count(right,counter);
return merge(left, right, counter);
}
它只与计数器的常规合并排序不同。
答案 29 :(得分:-1)
C代码易于理解:
#include<stdio.h>
#include<stdlib.h>
//To print an array
void print(int arr[],int n)
{
int i;
for(i=0,printf("\n");i<n;i++)
printf("%d ",arr[i]);
printf("\n");
}
//Merge Sort
int merge(int arr[],int left[],int right[],int l,int r)
{
int i=0,j=0,count=0;
while(i<l || j<r)
{
if(i==l)
{
arr[i+j]=right[j];
j++;
}
else if(j==r)
{
arr[i+j]=left[i];
i++;
}
else if(left[i]<=right[j])
{
arr[i+j]=left[i];
i++;
}
else
{
arr[i+j]=right[j];
count+=l-i;
j++;
}
}
//printf("\ncount:%d\n",count);
return count;
}
//Inversion Finding
int inversions(int arr[],int high)
{
if(high<1)
return 0;
int mid=(high+1)/2;
int left[mid];
int right[high-mid+1];
int i,j;
for(i=0;i<mid;i++)
left[i]=arr[i];
for(i=high-mid,j=high;j>=mid;i--,j--)
right[i]=arr[j];
//print(arr,high+1);
//print(left,mid);
//print(right,high-mid+1);
return inversions(left,mid-1) + inversions(right,high-mid) + merge(arr,left,right,mid,high-mid+1);
}
int main()
{
int arr[]={6,9,1,14,8,12,3,2};
int n=sizeof(arr)/sizeof(arr[0]);
print(arr,n);
printf("%d ",inversions(arr,n-1));
return 0;
}
答案 30 :(得分:-1)
另一个Python解决方案
def inv_cnt(a):
n = len(a)
if n==1:
return a,0
left = a[0:n//2] # should be smaller
left,cnt1 = inv_cnt(left)
right = a[n//2:] # should be larger
right, cnt2 = inv_cnt(right)
cnt = 0
i_left = i_right = i_a = 0
while i_a < n:
if (i_right>=len(right)) or (i_left < len(left) and left[i_left] <= right[i_right]):
a[i_a] = left[i_left]
i_left += 1
else:
a[i_a] = right[i_right]
i_right += 1
if i_left < len(left):
cnt += len(left) - i_left
i_a += 1
return (a, (cnt1 + cnt2 + cnt))
答案 31 :(得分:-1)
我最近不得不在R中做到这一点:
inversionNumber <- function(x){
mergeSort <- function(x){
if(length(x) == 1){
inv <- 0
} else {
n <- length(x)
n1 <- ceiling(n/2)
n2 <- n-n1
y1 <- mergeSort(x[1:n1])
y2 <- mergeSort(x[n1+1:n2])
inv <- y1$inversions + y2$inversions
x1 <- y1$sortedVector
x2 <- y2$sortedVector
i1 <- 1
i2 <- 1
while(i1+i2 <= n1+n2+1){
if(i2 > n2 || i1 <= n1 && x1[i1] <= x2[i2]){
x[i1+i2-1] <- x1[i1]
i1 <- i1 + 1
} else {
inv <- inv + n1 + 1 - i1
x[i1+i2-1] <- x2[i2]
i2 <- i2 + 1
}
}
}
return (list(inversions=inv,sortedVector=x))
}
r <- mergeSort(x)
return (r$inversions)
}
答案 32 :(得分:-1)
如果复制到输出的数字来自右数组,则在合并步骤递增计数器中使用mergesort。
答案 33 :(得分:-2)
这是我使用Scala的看法:
trait MergeSort {
def mergeSort(ls: List[Int]): List[Int] = {
def merge(ls1: List[Int], ls2: List[Int]): List[Int] =
(ls1, ls2) match {
case (_, Nil) => ls1
case (Nil, _) => ls2
case (lowsHead :: lowsTail, highsHead :: highsTail) =>
if (lowsHead <= highsHead) lowsHead :: merge(lowsTail, ls2)
else highsHead :: merge(ls1, highsTail)
}
ls match {
case Nil => Nil
case head :: Nil => ls
case _ =>
val (lows, highs) = ls.splitAt(ls.size / 2)
merge(mergeSort(lows), mergeSort(highs))
}
}
}
object InversionCounterApp extends App with MergeSort {
@annotation.tailrec
def calculate(list: List[Int], sortedListZippedWithIndex: List[(Int, Int)], counter: Int = 0): Int =
list match {
case Nil => counter
case head :: tail => calculate(tail, sortedListZippedWithIndex.filterNot(_._1 == 1), counter + sortedListZippedWithIndex.find(_._1 == head).map(_._2).getOrElse(0))
}
val list: List[Int] = List(6, 9, 1, 14, 8, 12, 3, 2)
val sortedListZippedWithIndex: List[(Int, Int)] = mergeSort(list).zipWithIndex
println("inversion counter = " + calculate(list, sortedListZippedWithIndex))
// prints: inversion counter = 28
}
答案 34 :(得分:-2)
Java实现:
import java.lang.reflect.Array;
import java.util.Arrays;
public class main {
public static void main(String[] args) {
int[] arr = {6, 9, 1, 14, 8, 12, 3, 2};
System.out.println(findinversion(arr,0,arr.length-1));
}
public static int findinversion(int[] arr,int beg,int end) {
if(beg >= end)
return 0;
int[] result = new int[end-beg+1];
int index = 0;
int mid = (beg+end)/2;
int count = 0, leftinv,rightinv;
//System.out.println("...."+beg+" "+end+" "+mid);
leftinv = findinversion(arr, beg, mid);
rightinv = findinversion(arr, mid+1, end);
l1:
for(int i = beg, j = mid+1; i<=mid || j<=end;/*index < result.length;*/ ) {
if(i>mid) {
for(;j<=end;j++)
result[index++]=arr[j];
break l1;
}
if(j>end) {
for(;i<=mid;i++)
result[index++]=arr[i];
break l1;
}
if(arr[i] <= arr[j]) {
result[index++]=arr[i];
i++;
} else {
System.out.println(arr[i]+" "+arr[j]);
count = count+ mid-i+1;
result[index++]=arr[j];
j++;
}
}
for(int i = 0, j=beg; i< end-beg+1; i++,j++)
arr[j]= result[i];
return (count+leftinv+rightinv);
//System.out.println(Arrays.toString(arr));
}
}
答案 35 :(得分:-2)
在Java中,Brute force算法比piggy-merge合并排序算法工作得更快,这是因为Java Dynamic编译器完成了运行时优化。
对于强力循环滚动优化将产生更好的结果。
答案 36 :(得分:-2)
数组中的反转次数是必须移动元素的总距离的一半,以便对数组进行排序。因此,可以通过对数组进行排序,维持得到的置换p [i],然后计算abs(p [i] -i)/ 2的和来计算它。这需要O(n log n)时间,这是最佳的。
另一种方法是http://mathworld.wolfram.com/PermutationInversion.html。此方法等于max(0,p [i] -i)之和,它等于abs(p [i] -i])/ 2之和,因为向左移动的总距离等于总距离元素向右移动。
编辑:这种方法是错误的(请参阅注释),遗憾的是,在保留方法特征的同时无法修复它。