看来我的数据格式为NumPy数组列表(requestAnimationFrame
):
type() = np.ndarray
我想把它变成一个polyfit函数:
[array([[ 0.00353654]]), array([[ 0.00353654]]), array([[ 0.00353654]]),
array([[ 0.00353654]]), array([[ 0.00353654]]), array([[ 0.00353654]]),
array([[ 0.00353654]]), array([[ 0.00353654]]), array([[ 0.00353654]]),
array([[ 0.00353654]]), array([[ 0.00353654]]), array([[ 0.00353654]]),
array([[ 0.00353654]])]
但是,它会返回错误:m1 = np.polyfit(x, y, deg=2)
我认为我需要将数据展平为:
TypeError: expected 1D vector for x
我尝试过一个列表理解,它通常适用于列表列表,但这并不符合预期:
[0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654 ...]
最好的方法是什么?
答案 0 :(得分:27)
你可以使用numpy.concatenate
,顾名思义,它基本上将这样一个输入列表的所有元素连接成一个NumPy数组,就像这样 -
import numpy as np
out = np.concatenate(input_list).ravel()
如果您希望最终输出为列表,则可以扩展解决方案,如此 -
out = np.concatenate(input_list).ravel().tolist()
示例运行 -
In [24]: input_list
Out[24]:
[array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]])]
In [25]: np.concatenate(input_list).ravel()
Out[25]:
array([ 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654, 0.00353654])
转换为列表 -
In [26]: np.concatenate(input_list).ravel().tolist()
Out[26]:
[0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654,
0.00353654]
答案 1 :(得分:2)
也可以通过
完成np.array(list_of_arrays).flatten().tolist()
导致
[0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654]
答案 2 :(得分:1)
我遇到了同样的问题,找到了一个结合了可变长度的一维numpy数组的解决方案:
np.column_stack(input_list).ravel()
有关更多信息,请参见numpy.column_stack。
带有可变长度数组的示例以及示例数据:
In [135]: input_list
Out[135]:
[array([[ 0.00353654, 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654]]),
array([[ 0.00353654, 0.00353654, 0.00353654]])]
In [136]: [i.size for i in input_list] # variable size arrays
Out[136]: [2, 1, 1, 3]
In [137]: np.column_stack(input_list).ravel()
Out[137]:
array([ 0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654])
注意:仅在Python 2.7.12上进行了测试
答案 3 :(得分:0)
另一种简单的方法是使用numpy.hstack()
,然后使用squeeze()
删除单例尺寸,如下所示:
In [61]: np.hstack(list_of_arrs).squeeze()
Out[61]:
array([0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654, 0.00353654, 0.00353654, 0.00353654,
0.00353654, 0.00353654, 0.00353654])
答案 4 :(得分:0)
使用itertools
展平数组的另一种方法:
import itertools
# Recreating array from question
a = [np.array([[0.00353654]])] * 13
# Make an iterator to yield items of the flattened list and create a list from that iterator
flattened = list(itertools.chain.from_iterable(a))
此解决方案应该非常快[strong]快并且高效使用内存,有关更多说明,请参见https://stackoverflow.com/a/408281/5993892。
如果结果数据结构应该是numpy
数组,请使用numpy.fromiter()
将迭代器用尽到数组中:
# Make an iterator to yield items of the flattened list and create a numpy array from that iterator
flattened_array = np.fromiter(itertools.chain.from_iterable(a), float)
itertools.chain.from_iterable()
的文档:
https://docs.python.org/3/library/itertools.html#itertools.chain.from_iterable
numpy.fromiter()
的文档:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromiter.html