我想使用Hadoop实现字符串匹配(Boyer-Moore)算法。我刚开始使用Hadoop,所以我不知道如何用Java编写Hadoop程序。
到目前为止,我看到的所有示例程序都是字数统计示例,我找不到任何用于字符串匹配的示例程序。
我尝试搜索一些教程,教授如何使用Java编写Hadoop应用程序但找不到任何内容。你能给我一些教程,我可以学习如何使用Java编写Hadoop应用程序。
提前致谢。
答案 0 :(得分:2)
我没有测试下面的代码,但这应该让你开始。 我使用了可用的BoyerMoore实现here
以下代码正在做什么:
目标是在输入文档中搜索模式。使用配置中设置的模式在设置方法中初始化BoyerMoore类。
映射器一次接收每一行,并使用BoyerMoore实例查找模式。如果找到匹配,我们使用上下文编写它。
这里不需要减速器。如果在不同的映射器中多次找到模式,则输出将具有多个偏移(每个映射器1个)。
package hadoop.boyermoore;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class BoyerMooreImpl {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private BoyerMoore boyerMoore;
private static IntWritable offset;
private Text offsetFound = new Text("offset");
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
String line = itr.nextToken();
int offset1 = boyerMoore.search(line);
if (line.length() != offset1) {
offset = new IntWritable(offset1);
context.write(offsetFound,offset);
}
}
}
@Override
public final void setup(Context context) {
if (boyerMoore == null)
boyerMoore = new BoyerMoore(context.getConfiguration().get("pattern"));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set("pattern","your_pattern_here");
Job job = Job.getInstance(conf, "BoyerMoore");
job.setJarByClass(BoyerMooreImpl.class);
job.setMapperClass(TokenizerMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
答案 1 :(得分:0)
我不知道这是否是并行运行算法的正确实现,但这是我想到的,
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
import org.apache.hadoop.util.*;
public class StringMatching extends Configured implements Tool {
public static void main(String args[]) throws Exception {
long start = System.currentTimeMillis();
int res = ToolRunner.run(new StringMatching(), args);
long end = System.currentTimeMillis();
System.exit((int)(end-start));
}
public int run(String[] args) throws Exception {
Path inputPath = new Path(args[0]);
Path outputPath = new Path(args[1]);
Configuration conf = getConf();
Job job = new Job(conf, this.getClass().toString());
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
job.setJobName("StringMatching");
job.setJarByClass(StringMatching.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);
return job.waitForCompletion(true) ? 0 : 1;
}
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(LongWritable key, Text value,
Mapper.Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
BoyerMoore bm = new BoyerMoore();
boolean flag = bm.findPattern(key.toString().trim().toLowerCase(), "abc");
if(flag){
context.write(key, new IntWritable(1));
}else{
context.write(key, new IntWritable(0));
}
}
}
}
我正在使用AWS(亚马逊网络服务),因此我可以从控制台中选择我希望我的程序同时运行的节点数。所以我假设我使用的map和reduce方法应该足以并行运行Boyer-Moore字符串匹配算法。