我必须通过重复测量个体的几个变量来检查大型数据库。由于我可以有超过300万的观察,我想至少删除我确定数据输入错误的数据。
连续变量
例如,关注可变重量(例如下面的数据框),我知道在一次观察和下一次观察之间,个体不能将体重减轻40%以上。我怎样才能检测出体重减轻较多的观察结果,如第3次观察个体“2”,其体重从30克减少到3克。
分类变量
例如,关于个人的状态。一个人可以被分类为3种状态(例如“少年”,“成年非种鸡”或“成年种鸡”;分别为1,2和3)。我知道一个人如果是成年人(“2”或“3”)就不能成为少年(“1”),但有可能在3 - > 2之间过渡。在这个特殊情况下,我想检测观察9,其中个体“3”被归类为“少年”,但在之前的观察中被归类为“成人”。
MyProgress {
id: progress
onProgressChanged:{
progressAnimation.to = progress
progressAnimation.duration =
(progress - myProgressBar.value) * 100 // change 100 to speed up or slow down animation.
progressAnimation.restart()
}
}
NumberAnimation {
id: progressAnimation
target: myProgressBar
property: "value"
}
你知道我怎么能解决这两种错误?
答案 0 :(得分:4)
根据您的说明并仅根据您上面提到的“问题”尝试:
Individuals <- c(1,1,1,2,2,2,3,3,3)
Weight <- c(10, 14, 20, 15, 30, 3, 12, 34, 30)
Week <- rep(1:3, 3)
Status <- c(1, 2, 3, 2, 3, 3, 2, 3, 1)
df <- as.data.frame (cbind(Individuals, Weight, Week, Status))
library(dplyr)
df %>%
group_by(Individuals) %>% ## for each individual
mutate(WeightReduce = 1-Weight/dplyr::lag(Weight, default = Weight[1])) %>% ## calculate the weight reduce (negative numbers here mean weight increase)
ungroup() %>% ## forget the grouping
mutate(flag = ifelse(WeightReduce >= 0.4 | dplyr::lag(Status, default = Status[1]) %in% 2:3 & Status == 1, 1, 0)) ## flag errors based on filters
# Individuals Weight Week Status WeightReduce flag
# (dbl) (dbl) (dbl) (dbl) (dbl) (dbl)
# 1 1 10 1 1 0.0000000 0
# 2 1 14 2 2 -0.4000000 0
# 3 1 20 3 3 -0.4285714 0
# 4 2 15 1 2 0.0000000 0
# 5 2 30 2 3 -1.0000000 0
# 6 2 3 3 3 0.9000000 1
# 7 3 12 1 2 0.0000000 0
# 8 3 34 2 3 -1.8333333 0
# 9 3 30 3 1 0.1176471 1
答案 1 :(得分:4)
您可以使用data.table
包来计算体重变化率和青少年异常,然后根据这两个标准进行过滤:
library(data.table)
setDT(df)[,c('continuous', 'categorical'):=list(
c(0,diff(Weight)/head(Weight, -1)), # rate of weight change per individual
Status==1 & c(F,diff(Status)<0)),Individuals][
continuous>=-0.4 & !categorical,][]
# Individuals Weight Week Status change continuous categorical
#1: 1 10 1 1 0.0000000 0.0000000 FALSE
#2: 1 14 2 2 0.4000000 0.4000000 FALSE
#3: 1 20 3 3 0.4285714 0.4285714 FALSE
#4: 2 15 1 2 0.0000000 0.0000000 FALSE
#5: 2 30 2 3 1.0000000 1.0000000 FALSE
#6: 3 12 1 2 0.0000000 0.0000000 FALSE
#7: 3 34 2 3 1.8333333 1.8333333 FALSE
答案 2 :(得分:4)
我希望这会有所帮助。
library(data.table)
library(zoo)
df <- data.table(df)
# used to check percentage change in weight variable
calcreduction <- function(x){
res <- diff(x)/x[-length(x)]
return(c(0,res))
}
# this will make it easy to get rid of values where WeightReduction < -.4
#function used to assign combination type
# you can have 11,12,13,22,23,32,33 or 21,31. The latter are "bad"
getcomb <- function(x){
res <- rbind(c(0,0),rollapply(x,2,paste))
return(paste(res[,1],res[,2],sep=""))
}
# this will make it easy to get rid of values where the Status change is no good
# you can just pull the new vectors and then use logic
# to decide what you want to do with these values
res <- df[,list("WeightReduction"=calcreduction(Weight),
"StatusChange"=getcomb(Status),Weight,Week,Status),by=Individuals]
> res
Individuals WeightReduction StatusChange Weight Week Status
1: 1 0.0000000 00 10 1 1
2: 1 0.4000000 12 14 2 2
3: 1 0.4285714 23 20 3 3
4: 2 0.0000000 00 15 1 2
5: 2 1.0000000 23 30 2 3
6: 2 -0.9000000 33 3 3 3
7: 3 0.0000000 00 12 1 2
8: 3 1.8333333 23 34 2 3
9: 3 -0.1176471 31 30 3 1