前提
我有一个圆圈,动画成8个贝塞尔曲线的形状。为了使过渡平滑,我需要用8个立方贝塞尔曲线制作圆。 这是我到目前为止所做的:
代码
- (UIBezierPath*)pathBubbleLeft {
UIBezierPath *path = [UIBezierPath new];
[path moveToPoint:p(sqlx, sqlMidy)];
CGFloat r = sqlW/2;
CGFloat sin45 = 0.7071 * r;
CGFloat cos45 = 0.7071 * r;
[path addRelativeCurveToPoint:point(sqlMidx - cos45, sqlMidy - sin45) control1:vector(0, 0.4) control2:vector(0.5, 0.8)];
[path addRelativeCurveToPoint:point(sqlMidx, sqly) control1:vector(0.2, 0.5) control2:vector(0.4, 1)];
[path addRelativeCurveToPoint:point(sqlMidx + cos45, sqlMidy - sin45) control1:vector(0.6, 0) control2:vector(0.8, 0.5)];
[path addRelativeCurveToPoint:point(sqlMaxx, sqlMidy) control1:vector(0.5, 0.2) control2:vector(1, 0.5)];
[path addRelativeCurveToPoint:point(sqlMidx + cos45, sqlMidy + sin45) control1:vector(0, 0.4) control2:vector(0.5, 0.8)];
[path addRelativeCurveToPoint:point(sqlMidx, sqlMaxy) control1:vector(0.2, 0.5) control2:vector(0.4, 1)];
[path addRelativeCurveToPoint:point(sqlMidx - cos45, sqlMidy + sin45) control1:vector(0.6, 0) control2:vector(0.8, 0.5)];
[path addRelativeCurveToPoint:point(sqlx, sqlMidy) control1:vector(0.5, 0.2) control2:vector(1, 0.5)];
return path;
}
路径从左开始顺时针(从pi到pi / 2,0,3pi / 4,pi)
point
和vector
是CGPointMake和CGVectorMake的短片
'sql'位于sqlx
,sqly
,sqlMidx
,sqlMidY
,sqlMaxx
& sqlMaxy
代表'squareLeft',圆圈的边界矩形。这些都是CGFloats。
addRelativeCurveToPoint
用于相对于起点/终点定义控制点。 (0,0)开始,(1,1)结束。更容易阅读。
- (void)addRelativeCurveToPoint:(CGPoint)endPoint control1:(CGVector)controlPoint1 control2:(CGVector)controlPoint2 {
CGPoint start = self.currentPoint;
CGPoint end = endPoint;
CGFloat x1 = start.x + controlPoint1.dx*(end.x - start.x);
CGFloat x2 = start.x + controlPoint2.dx*(end.x - start.x);
CGFloat y1 = start.y + controlPoint1.dy*(end.y - start.y);
CGFloat y2 = start.y + controlPoint2.dy*(end.y - start.y);
[self addCurveToPoint:endPoint controlPoint1:CGPointMake(x1, y1) controlPoint2:CGPointMake(x2, y2)];
}
红色圆圈有点波浪状。这就是我想解决的问题。
下面,左侧圆圈使用上面的代码,右侧圆圈由4条曲线组成,顶部插入2个零长度,底部插入2个([path addLineToPoint:path.currentPoint];
)。
从左边到花生中间过渡是好的,但从中间到右边是奇怪的
答案 0 :(得分:5)
使用四个线段,使用三次贝塞尔曲线的圆近似不能比@fang在评论中给出的0.55228值更圆:它只是数学上唯一的值,立方体贝塞尔曲线最接近圆形。在无限精度表示中,它实际上是您获得的值:
4 angle 4 sqrt(2) - 1
k = - * tan(-------) = - * tan(pi/8) = 4 * -----------
3 2 3 3
并且是0.5522847498307933984022516322796 [...]。这可以为您提供4个段的最佳近似值,因此如果您需要使用8个段,我们需要一个不同的值,这意味着我们需要使用为 k 提供pi的角度的推导/ 2(四分之一圈),看看它为pi / 4(第八个圆圈)提供了什么。所以:我们将角度pi/4
插入Primer on Bezier Curve的approximating circles with cubic curves部分中列出的函数中,我们得到:
start = {
x: 1,
y: 0
}
c1 = {
x: 1,
y: 4/3 * tan(pi/16)
}
c2 = {
x: cos(pi/4) + 4/3 * tan(pi/16) * sin(pi/4)
y: sin(pi/4) - 4/3 * tan(pi/16) * cos(pi/4)
}
e = {
x: cos(pi/4)
y: sin(pi/4)
}
给了我们这些(完全有用的)近似坐标:
s = (1, 0)
c1 = (1, 0.265216...)
c2 = (0.894643..., 0.51957...)
e = (0.7071..., 0.7071...)
那将是段1,然后其余的段只是通过对称得出,段2是:
s = (0.7071..., 0.7071...)
c1 = (0.51957..., 0.894643...)
c2 = (0.265216..., 1)
e = (0, 1)
这些坐标的演示覆盖了四分之一圆圈:http://jsbin.com/ridedahixu/edit?html,output
其余的是(+, - ),( - ,+)和( - , - )象限中明显的对称性。
这些是最佳可能近似值,因此:如果bezierPathWithOvalInRect(...)
执行其他操作,那么不正确比我们几十年前制定的值=)< / p>
答案 1 :(得分:1)
当圆由四条贝塞尔曲线近似时,第一个控制点(在(1,0)起点之后)具有坐标(1,0.552)。对于8曲线情况,由于Bezies细分规则,它将为(1,0.276)。
所以你的控制向量是(0,0.276),(0.276,0),(0.195,0.195),具有不同的符号组合
答案 2 :(得分:0)
OP解决方案。
基于迈克的答案
- (CGRect)sql {
return CGRectMake(0, 0, self.frameHeight, self.frameHeight);
}
CGPoint point(CGFloat x, CGFloat y) {return CGPointMake(x, y);}
#define sqlx (self.sql.origin.x)
#define sqly (self.sql.origin.y)
#define sqlMaxx (self.sql.origin.x + self.sql.size.width)
#define sqlMidx (self.sql.origin.x + self.sql.size.width/2)
#define sqlMaxy (self.sql.origin.y + self.sql.size.height)
#define sqlMidy (self.sql.origin.y + self.sql.size.height/2)
#define sqlW (self.sql.size.width)
#define sqlH (self.sql.size.height)
- (UIBezierPath*)pathBubbleLeft {
UIBezierPath *path = [UIBezierPath new];
[path moveToPoint:p(sqlx, sqlMidy)];
CGFloat r = sqlW/2;
CGFloat sin45 = sin(M_PI_4)*r;
CGFloat cos45 = cos(M_PI_4)*r;
CGFloat magic1 = (cos(M_PI_4) + 4/3.0 * tan(M_PI/16.0) * sin(M_PI_4))*r;
CGFloat magic2 = (sin(M_PI_4) - 4/3.0 * tan(M_PI/16.0) * cos(M_PI_4))*r;
CGFloat magic3 = 4/3.0 * tan(M_PI/16.0)*r;
[path addCurveToPoint:point(sqlMidx - cos45, sqlMidy - sin45)
controlPoint1:point(sqlx, sqlMidy - magic3)
controlPoint2:point(sqlMidx - magic1, sqlMidy - magic2)];
[path addCurveToPoint:point(sqlMidx, sqly)
controlPoint1:point(sqlMidx - magic2 , sqlMidy - magic1)
controlPoint2:point(sqlMidx - magic3, sqly)];
[path addCurveToPoint:point(sqlMidx + cos45, sqlMidy - sin45)
controlPoint1:point(sqlMidx + magic3, sqly)
controlPoint2:point(sqlMidx + magic2 , sqlMidy - magic1)];
[path addCurveToPoint:point(sqlMaxx, sqlMidy)
controlPoint1:point(sqlMidx + magic1 , sqlMidy - magic2)
controlPoint2:point(sqlMaxx, sqlMidy - magic3)];
[path addCurveToPoint:point(sqlMidx + cos45, sqlMidy + sin45)
controlPoint1:point(sqlMaxx, sqlMidy + magic3)
controlPoint2:point(sqlMidx + magic1 , sqlMidy + magic2)];
[path addCurveToPoint:point(sqlMidx, sqlMaxy)
controlPoint1:point(sqlMidx + magic2 , sqlMidy + magic1)
controlPoint2:point(sqlMidx + magic3, sqlMaxy)];
[path addCurveToPoint:point(sqlMidx - cos45, sqlMidy + sin45)
controlPoint1:point(sqlMidx - magic3 , sqlMaxy)
controlPoint2:point(sqlMidx - magic2 , sqlMidy + magic1)];
[path addCurveToPoint:point(sqlx, sqlMidy)
controlPoint1:point(sqlMidx - magic1 , sqlMidy + magic2)
controlPoint2:point(sqlx, sqlMidy + magic3)];
return path;
}
结果: 浅灰色是pathBubbleLeft,红色描边是bezierPathWithOvalInRect(恕我直言,这很完美)。
观察:
此代码适用于iOS,其坐标(0,0)位于左上方,坐标(320,548)位于右下方。对于MacOS(0,0)位于左下方;
绘图从9点开始,并顺时针旋转;