我有一个csv大文件,我无法在内存中使用python处理。在使用以下逻辑对特定列进行分组后,我将其拆分为多个块:
def splitDataFile(self, data_file):
self.list_of_chunk_names = []
csv_reader = csv.reader(open(data_file, "rb"), delimiter="|")
columns = csv_reader.next()
for key,rows in groupby(csv_reader, lambda row: (row[1])):
file_name = "data_chunk"+str(key)+".csv"
self.list_of_chunk_names.append(file_name)
with open(file_name, "w") as output:
output.write("|".join(columns)+"\n")
for row in rows:
output.write("|".join(row)+"\n")
print "message: list of chunks ", self.list_of_chunk_names
return
逻辑正在运行,但速度很慢。我想知道如何优化这个?比如熊猫?
修改
进一步的解释:我不是在寻找一个简单的分裂到相同大小的块(比如每个有1000行),我想用列的值拆分,这就是我使用groupby的原因。
答案 0 :(得分:3)
使用此Python 3程序:
#!/usr/bin/env python3
import binascii
import csv
import os.path
import sys
from tkinter.filedialog import askopenfilename, askdirectory
from tkinter.simpledialog import askinteger
def split_csv_file(f, dst_dir, keyfunc):
csv_reader = csv.reader(f)
csv_writers = {}
for row in csv_reader:
k = keyfunc(row)
if k not in csv_writers:
csv_writers[k] = csv.writer(open(os.path.join(dst_dir, k),
mode='w', newline=''))
csv_writers[k].writerow(row)
def get_args_from_cli():
input_filename = sys.argv[1]
column = int(sys.argv[2])
dst_dir = sys.argv[3]
return (input_filename, column, dst_dir)
def get_args_from_gui():
input_filename = askopenfilename(
filetypes=(('CSV', '.csv'),),
title='Select CSV Input File')
column = askinteger('Choose Table Column', 'Table column')
dst_dir = askdirectory(title='Select Destination Directory')
return (input_filename, column, dst_dir)
if __name__ == '__main__':
if len(sys.argv) == 1:
input_filename, column, dst_dir = get_args_from_gui()
elif len(sys.argv) == 4:
input_filename, column, dst_dir = get_args_from_cli()
else:
raise Exception("Invalid number of arguments")
with open(input_filename, mode='r', newline='') as f:
split_csv_file(f, dst_dir, lambda r: r[column-1]+'.csv')
# if the column has funky values resulting in invalid filenames
# replace the line from above with:
# split_csv_file(f, dst_dir, lambda r: binascii.b2a_hex(r[column-1].encode('utf-8')).decode('utf-8')+'.csv')
将其另存为split-csv.py
并从资源管理器或命令运行它
线。
例如,根据第1列拆分superuser.csv
并编写
dstdir
下的输出文件使用:
python split-csv.py data.csv 1 dstdir
如果您在没有参数的情况下运行它,基于Tkinter的GUI将提示您 选择输入文件,列(基于1的索引)和 目的地目录。
答案 1 :(得分:2)
我将使用以下内容,我将迭代要拆分的列的唯一值,以过滤数据块。
def splitWithPandas(data_file, split_by_column):
values_to_split_by = pd.read_csv(data_file, delimiter="|", usecols=[split_by_column])
values_to_split_by.drop_duplicates()
values_to_split_by = pd.unique(values_to_split_by.values.ravel())
for i in values_to_split_by:
iter_csv = pd.read_csv(data_file, delimiter="|", chunksize=100000)
df = pd.concat([chunk[chunk[split_by_column] == i] for chunk in iter_csv])
df.to_csv("data_chunk_"+i, sep="|", index=False)
答案 2 :(得分:1)
使用pandas的内置分块功能(chunksize
关键字arg到read_csv
),你可能会获得最佳性能,
http://pandas.pydata.org/pandas-docs/version/0.16.2/generated/pandas.read_csv.html
例如,
reader = pd.read_table('my_data.csv', chunksize=4)
for chunk in reader:
print(chunk)
编辑:
这可能会让你到处,
import pandas as pd
group_col_indx = 1
group_col = pd.read_csv('test.csv', usecols=[group_col_indx])
keys = group_col.iloc[:,0].unique()
for key in keys:
df_list = []
reader = pd.read_csv('test.csv', chunksize=2)
for chunk in reader:
good_rows = chunk[chunk.iloc[:,group_col_indx] == key]
df_list.append(good_rows)
df_key = pd.concat(df_list)
答案 3 :(得分:1)
我怀疑每次处理新的行块时,最大的瓶颈是打开和关闭文件句柄。只要您写入的文件数量不是太大,更好的方法是保持所有文件都打开。这是一个大纲:
def splitDataFile(self, data_file):
open_files = dict()
input_file = open(data_file, "rb")
try:
...
csv_reader = csv.reader(input_file, ...)
...
for key, rows in groupby(csv_reader, lambda row: (row[1])):
...
try:
output = open_files[key]
except KeyError:
output = open(file_name, "w")
output.write(...)
...
finally:
for open_file in open_files.itervalues():
open_file.close()
input_file.close()
当然,如果您只有一个具有任何给定密钥的组,这将无济于事。 (实际上它可能会让事情变得更糟,因为你最终会不必要地打开一堆文件。)你越频繁地写一个文件,你从这个变化中得到的好处就越多。
如果需要,您可以将其与pandas结合使用,并使用read_csv
或read_table
的分块功能来处理输入处理。