请帮助我找到并打印C编程语言中从大到小方阵的所有方矩阵子矩阵
我编写了错误的代码:
int main() {
int mtrx_size = 8;
int mat[8][8] = {
{ 1, 2, 3, 4, 5, 6, 7, 8},
{ 9,10,11,12,13,14,15,16},
{17,18,19,20,21,22,23,24},
{25,26,27,28,29,30,31,32},
{33,34,35,36,37,38,39,40},
{41,42,43,44,45,46,47,48},
{49,50,51,52,53,54,55,56},
{57,58,59,60,61,62,63,64}
};
int i,j;
int sub_mtrx_size;
for(sub_mtrx_size = mtrx_size; sub_mtrx_size > 1 ; sub_mtrx_size--)
{
for(i = 0; i < sub_mtrx_size; i++)
{
for(j = 0; j < sub_mtrx_size; j++)
{
printf("%3d ", mat[i][j]);
}
printf("\n");
}
printf("\n");
}
return 0;
在这里,我需要找到所有8x8,7x7,6x6,5x5,4x4,3x3和2x2子矩阵。
答案 0 :(得分:2)
您的代码只是为每个尺寸打印一个子矩阵,位于矩阵的左上角。您需要添加i和j偏移以获得所有位置的子矩阵:
#include <stdio.h>
int main() {
int mtrx_size = 8;
int mat[8][8] = {
{ 1, 2, 3, 4, 5, 6, 7, 8},
{ 9,10,11,12,13,14,15,16},
{17,18,19,20,21,22,23,24},
{25,26,27,28,29,30,31,32},
{33,34,35,36,37,38,39,40},
{41,42,43,44,45,46,47,48},
{49,50,51,52,53,54,55,56},
{57,58,59,60,61,62,63,64}
};
int i, j, ioff, joff, off_cnt;
int sub_mtrx_size;
for(sub_mtrx_size = mtrx_size; sub_mtrx_size > 1 ; sub_mtrx_size--) {
off_cnt = mtrx_size - sub_mtrx_size + 1;
for (ioff = 0; ioff < off_cnt; ioff++) {
for (joff = 0; joff < off_cnt; joff++) {
for (i = 0; i < sub_mtrx_size; i++) {
for (j = 0; j < sub_mtrx_size; j++) {
printf("%3d ", mat[i+ioff][j+joff]);
}
printf("\n");
}
printf("\n");
}
}
}
return 0;
}
答案 1 :(得分:0)
通用nxm矩阵的Java实现:
private static void printSubMatrix(int[][] mat) {
int rows=mat.length;
int cols=mat[0].length;
//prints all submatrix greater than or equal to 2x2
for (int subRow = rows; subRow >= 2; subRow--) {
int rowLimit = rows - subRow + 1;
for (int subCol = cols; subCol >= 2; subCol--) {
int colLimit = cols - subCol + 1;
for (int startRow = 0; startRow < rowLimit; startRow++) {
for (int startCol = 0; startCol < colLimit; startCol++) {
for (int i = 0; i < subRow; i++) {
for (int j = 0; j < subCol; j++) {
System.out.print(mat[i + startRow][j + startCol] + " ");
}
System.out.print("\n");
}
System.out.print("\n");
}
}
}
}
}
答案 2 :(得分:0)
#include <stdio.h>
int main() {
int mtrx_size = 8;
int mat[8][8] = {
{ 1, 2, 3, 4, 5, 6, 7, 8},
{ 9,10,11,12,13,14,15,16},
{17,18,19,20,21,22,23,24},
{25,26,27,28,29,30,31,32},
{33,34,35,36,37,38,39,40},
{41,42,43,44,45,46,47,48},
{49,50,51,52,53,54,55,56},
{57,58,59,60,61,62,63,64}
};
int i, j, ioff, joff, off_cnt;
int sub_mtrx_size;
/* if we make terminating condition sub_mtrx_size>=1 then we will have all
possible square sub matrices */
for(sub_mtrx_size = mtrx_size; sub_mtrx_size >= 1 ; sub_mtrx_size--) {
off_cnt = mtrx_size - sub_mtrx_size + 1;
for (ioff = 0; ioff < off_cnt; ioff++) {
for (joff = 0; joff < off_cnt; joff++) {
for (i = 0; i < sub_mtrx_size; i++) {
for (j = 0; j < sub_mtrx_size; j++) {
printf("%3d ", mat[i+ioff][j+joff]);
}
printf("\n");
}
printf("\n");
}
}
}
return 0;
}