Delaunay三角剖分:太多三角形

时间:2015-11-08 02:42:21

标签: c++ algorithm delaunay

我正在尝试用C ++实现Delaunay三角剖分。目前它正在工作,但我没有得到正确数量的三角形。 我用方形图案中的4个点来尝试它:(0,0),(1,0),(0,1),(1,1)。

这是我使用的算法:

std::vector<Triangle> Delaunay::triangulate(std::vector<Vec2f> &vertices) {

// Determinate the super triangle
float minX = vertices[0].getX();
float minY = vertices[0].getY();
float maxX = minX;
float maxY = minY;

for(std::size_t i = 0; i < vertices.size(); ++i) {
    if (vertices[i].getX() < minX) minX = vertices[i].getX();
    if (vertices[i].getY() < minY) minY = vertices[i].getY();
    if (vertices[i].getX() > maxX) maxX = vertices[i].getX();
    if (vertices[i].getY() > maxY) maxY = vertices[i].getY();
}

float dx = maxX - minX;
float dy = maxY - minY;
float deltaMax = std::max(dx, dy);
float midx = (minX + maxX) / 2.f;
float midy = (minY + maxY) / 2.f;

Vec2f p1(midx - 20 * deltaMax, midy - deltaMax);
Vec2f p2(midx, midy + 20 * deltaMax);
Vec2f p3(midx + 20 * deltaMax, midy - deltaMax);    

// Add the super triangle vertices to the end of the vertex list
vertices.push_back(p1);
vertices.push_back(p2);
vertices.push_back(p3);

// Add the super triangle to the triangle list
std::vector<Triangle> triangleList = {Triangle(p1, p2, p3)};

// For each point in the vertex list
for(auto point = begin(vertices); point != end(vertices); point++) 
{
    // Initialize the edges buffer
    std::vector<Edge> edgesBuff;

    // For each triangles currently in the triangle list    
    for(auto triangle = begin(triangleList); triangle != end(triangleList);) 
    {
        if(triangle->inCircumCircle(*point))
        {
            Edge tmp[3] = {triangle->getE1(), triangle->getE2(), triangle->getE3()};
            edgesBuff.insert(end(edgesBuff), tmp, tmp + 3); 
            triangle = triangleList.erase(triangle);
        }
        else
        {
            triangle++;
        }
    }

    // Delete all doubly specified edges from the edge buffer
    // Black magic by https://github.com/MechaRage 
    auto ite = begin(edgesBuff), last = end(edgesBuff);

    while(ite != last) {
        // Search for at least one duplicate of the current element
        auto twin = std::find(ite + 1, last, *ite);
        if(twin != last)
            // If one is found, push them all to the end.
            last = std::partition(ite, last, [&ite](auto const &o){ return !(o == *ite); });
        else
            ++ite;
    }

    // Remove all the duplicates, which have been shoved past "last".
    edgesBuff.erase(last, end(edgesBuff));

    // Add the triangle to the list
    for(auto edge = begin(edgesBuff); edge != end(edgesBuff); edge++)
        triangleList.push_back(Triangle(edge->getP1(), edge->getP2(), *point));


}

// Remove any triangles from the triangle list that use the supertriangle vertices
triangleList.erase(std::remove_if(begin(triangleList), end(triangleList), [p1, p2, p3](auto t){
    return t.containsVertex(p1) || t.containsVertex(p2) || t.containsVertex(p3);
}), end(triangleList));

return triangleList;

}

这就是我获得的:

Triangle:
 Point x: 1 y: 0
 Point x: 0 y: 0
 Point x: 1 y: 1

Triangle:
 Point x: 1 y: 0
 Point x: 1 y: 1
 Point x: 0 y: 1

Triangle:
 Point x: 0 y: 0
 Point x: 1 y: 1
 Point x: 0 y: 1

虽然这是正确的输出:

Triangle:
 Point x: 1 y: 0
 Point x: 0 y: 0
 Point x: 0 y: 1

Triangle:
 Point x: 1 y: 0
 Point x: 1 y: 1
 Point x: 0 y: 1

我不知道为什么有一个带有(0,0)和(1,1)的三角形。 我需要一个外部的眼睛来检查代码并找出问题所在。

所有来源都在Github repo上。随意分叉并准备你的代码。

谢谢!

3 个答案:

答案 0 :(得分:0)

这个Paul Bourke的Delaunay三角剖分算法的实现怎么样?看看Triangulate()我多次使用过这个来源而没有任何抱怨

#include <iostream>
#include <stdlib.h> // for C qsort 
#include <cmath>
#include <time.h> // for random

const int MaxVertices = 500;
const int MaxTriangles = 1000;
//const int n_MaxPoints = 10; // for the test programm
const double EPSILON = 0.000001;

struct ITRIANGLE{
  int p1, p2, p3;
};

struct IEDGE{
  int p1, p2;
};

struct XYZ{
  double x, y, z;
};

int XYZCompare(const void *v1, const void *v2);
int Triangulate(int nv, XYZ pxyz[], ITRIANGLE v[], int &ntri);
int CircumCircle(double, double, double, double, double, double, double, double, double&, double&, double&);
using namespace std; 

////////////////////////////////////////////////////////////////////////
// CircumCircle() :
//   Return true if a point (xp,yp) is inside the circumcircle made up
//   of the points (x1,y1), (x2,y2), (x3,y3)
//   The circumcircle centre is returned in (xc,yc) and the radius r
//   Note : A point on the edge is inside the circumcircle
////////////////////////////////////////////////////////////////////////

int CircumCircle(double xp, double yp, double x1, double y1, double x2, 
double y2, double x3, double y3, double &xc, double &yc, double &r){
  double m1, m2, mx1, mx2, my1, my2;
  double dx, dy, rsqr, drsqr;

/* Check for coincident points */
if(abs(y1 - y2) < EPSILON && abs(y2 - y3) < EPSILON)
  return(false);
if(abs(y2-y1) < EPSILON){ 
  m2 = - (x3 - x2) / (y3 - y2);
  mx2 = (x2 + x3) / 2.0;
  my2 = (y2 + y3) / 2.0;
  xc = (x2 + x1) / 2.0;
  yc = m2 * (xc - mx2) + my2;
}else if(abs(y3 - y2) < EPSILON){ 
        m1 = - (x2 - x1) / (y2 - y1);
        mx1 = (x1 + x2) / 2.0;
        my1 = (y1 + y2) / 2.0;
        xc = (x3 + x2) / 2.0;
        yc = m1 * (xc - mx1) + my1;
      }else{
         m1 = - (x2 - x1) / (y2 - y1); 
         m2 = - (x3 - x2) / (y3 - y2); 
         mx1 = (x1 + x2) / 2.0; 
         mx2 = (x2 + x3) / 2.0;
         my1 = (y1 + y2) / 2.0;
         my2 = (y2 + y3) / 2.0;
         xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2); 
         yc = m1 * (xc - mx1) + my1; 
       }
  dx = x2 - xc;
  dy = y2 - yc;
  rsqr = dx * dx + dy * dy;
  r = sqrt(rsqr); 
  dx = xp - xc;
  dy = yp - yc;
  drsqr = dx * dx + dy * dy;
  return((drsqr <= rsqr) ? true : false);
}
///////////////////////////////////////////////////////////////////////////////
// Triangulate() :
//   Triangulation subroutine
//   Takes as input NV vertices in array pxyz
//   Returned is a list of ntri triangular faces in the array v
//   These triangles are arranged in a consistent clockwise order.
//   The triangle array 'v' should be malloced to 3 * nv
//   The vertex array pxyz must be big enough to hold 3 more points
//   The vertex array must be sorted in increasing x values say
//
//   qsort(p,nv,sizeof(XYZ),XYZCompare);
///////////////////////////////////////////////////////////////////////////////

int Triangulate(int nv, XYZ pxyz[], ITRIANGLE v[], int &ntri){
  int *complete = NULL;
  IEDGE *edges = NULL; 
  IEDGE *p_EdgeTemp;
  int nedge = 0;
  int trimax, emax = 200;
  int status = 0;
  int inside;
  int i, j, k;
  double xp, yp, x1, y1, x2, y2, x3, y3, xc, yc, r;
  double xmin, xmax, ymin, ymax, xmid, ymid;
  double dx, dy, dmax; 

/* Allocate memory for the completeness list, flag for each triangle */
  trimax = 4 * nv;
  complete = new int[trimax];
/* Allocate memory for the edge list */
  edges = new IEDGE[emax];
/*
      Find the maximum and minimum vertex bounds.
      This is to allow calculation of the bounding triangle
*/
  xmin = pxyz[0].x;
  ymin = pxyz[0].y;
  xmax = xmin;
  ymax = ymin;
  for(i = 1; i < nv; i++){
    if (pxyz[i].x < xmin) xmin = pxyz[i].x;
    if (pxyz[i].x > xmax) xmax = pxyz[i].x;
    if (pxyz[i].y < ymin) ymin = pxyz[i].y;
    if (pxyz[i].y > ymax) ymax = pxyz[i].y;
  }
  dx = xmax - xmin;
  dy = ymax - ymin;
  dmax = (dx > dy) ? dx : dy;
  xmid = (xmax + xmin) / 2.0;
  ymid = (ymax + ymin) / 2.0;
/*
   Set up the supertriangle
   his is a triangle which encompasses all the sample points.
   The supertriangle coordinates are added to the end of the
   vertex list. The supertriangle is the first triangle in
   the triangle list.
*/
  pxyz[nv+0].x = xmid - 20 * dmax;
  pxyz[nv+0].y = ymid - dmax;
  pxyz[nv+1].x = xmid;
  pxyz[nv+1].y = ymid + 20 * dmax;
  pxyz[nv+2].x = xmid + 20 * dmax;
  pxyz[nv+2].y = ymid - dmax;
  v[0].p1 = nv;
  v[0].p2 = nv+1;
  v[0].p3 = nv+2;
  complete[0] = false;
  ntri = 1;
/*
   Include each point one at a time into the existing mesh
*/
  for(i = 0; i < nv; i++){
    xp = pxyz[i].x;
    yp = pxyz[i].y;
    nedge = 0;
/*
     Set up the edge buffer.
     If the point (xp,yp) lies inside the circumcircle then the
     three edges of that triangle are added to the edge buffer
     and that triangle is removed.
*/
  for(j = 0; j < ntri; j++){
    if(complete[j])
      continue;
    x1 = pxyz[v[j].p1].x;
    y1 = pxyz[v[j].p1].y;
    x2 = pxyz[v[j].p2].x;
    y2 = pxyz[v[j].p2].y;
    x3 = pxyz[v[j].p3].x;
    y3 = pxyz[v[j].p3].y;
    inside = CircumCircle(xp, yp, x1, y1, x2, y2, x3, y3, xc, yc, r);
    if (xc + r < xp)
// Suggested
// if (xc + r + EPSILON < xp)
      complete[j] = true;
    if(inside){
/* Check that we haven't exceeded the edge list size */
      if(nedge + 3 >= emax){
        emax += 100;
        p_EdgeTemp = new IEDGE[emax];
        for (int i = 0; i < nedge; i++) { // Fix by John Bowman
          p_EdgeTemp[i] = edges[i];   
        }
        delete []edges;
        edges = p_EdgeTemp;
      }
      edges[nedge+0].p1 = v[j].p1;
      edges[nedge+0].p2 = v[j].p2;
      edges[nedge+1].p1 = v[j].p2;
      edges[nedge+1].p2 = v[j].p3;
      edges[nedge+2].p1 = v[j].p3;
      edges[nedge+2].p2 = v[j].p1;
      nedge += 3;
      v[j] = v[ntri-1];
      complete[j] = complete[ntri-1];
      ntri--;
      j--;
    }
  }
/*
  Tag multiple edges
  Note: if all triangles are specified anticlockwise then all
  interior edges are opposite pointing in direction.
*/
  for(j = 0; j < nedge - 1; j++){
    for(k = j + 1; k < nedge; k++){
      if((edges[j].p1 == edges[k].p2) && (edges[j].p2 == edges[k].p1)){
        edges[j].p1 = -1;
        edges[j].p2 = -1;
        edges[k].p1 = -1;
        edges[k].p2 = -1;
      }
       /* Shouldn't need the following, see note above */
      if((edges[j].p1 == edges[k].p1) && (edges[j].p2 == edges[k].p2)){
        edges[j].p1 = -1;
        edges[j].p2 = -1;
        edges[k].p1 = -1;
        edges[k].p2 = -1;
      }
    }
  }
/*
     Form new triangles for the current point
     Skipping over any tagged edges.
     All edges are arranged in clockwise order.
*/
  for(j = 0; j < nedge; j++) {
    if(edges[j].p1 < 0 || edges[j].p2 < 0)
      continue;
    v[ntri].p1 = edges[j].p1;
    v[ntri].p2 = edges[j].p2;
    v[ntri].p3 = i;
    complete[ntri] = false;
    ntri++;
  }
}
/*
      Remove triangles with supertriangle vertices
      These are triangles which have a vertex number greater than nv
*/
  for(i = 0; i < ntri; i++) {
    if(v[i].p1 >= nv || v[i].p2 >= nv || v[i].p3 >= nv) {
      v[i] = v[ntri-1];
      ntri--;
      i--;
    }
  }
  delete[] edges;
  delete[] complete;
  return 0;
} 

int XYZCompare(const void *v1, const void *v2){
  XYZ *p1, *p2;

  p1 = (XYZ*)v1;
  p2 = (XYZ*)v2;
  if(p1->x < p2->x)
    return(-1);
  else if(p1->x > p2->x)
         return(1);
       else
         return(0);
}

答案 1 :(得分:0)

我没有使用调试器,但是从生成的三角形看来,这似乎是一个准确性/模糊性问题。

当你对一个正方形进行三角测量时,有两种方法可以将它分成三角形,两种方法都可以从Delaunay标准中得到(外接圆心位于三角形的边界上)。

因此,如果您单独评估每个三角形,有时甚至可以获得4个三角形(取决于实现)。

通常在这种情况下,我建议将算法构建为一系列不能产生矛盾答案的问题。在这种情况下,问题是&#34;哪个点基于边(1,0) - (1,1)&#34;为三角形。但通常这需要对算法进行重大更改。

快速修复通常涉及为比较和额外检查添加一些容差(如非交叉三角形)。但通常它只会使问题变得罕见。

答案 2 :(得分:0)

很可能你并没有删除所有的双边,特别是不是来自相同三角形的边,而是只有另一个顺序的顶点。正确的功能在@cMinor的答案中。