不确定如何使用.bool(),any,all或empty来使两个不同的示例有效。每个都抛出了模糊值错误
import pandas as pd
first = pd.Series([1,0,0])
second = pd.Series([1,2,1])
number_df = pd.DataFrame( {'first': first, 'second': second} )
bool_df = pd.DataFrame( {'testA': pd.Series([True, False, True]), 'testB': pd.Series([True, False, False])})
#ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
""" both the next two lines fail with the ambiguous Series issue"""
#each row should be true or false
bool_df['double_zero_check'] = (number_df['first'] != 0) and (number_df['second'] != 0 )
bool_df['parity'] = bool_df['testA'] and bool_df['testB']
答案 0 :(得分:2)
你需要使用按位和(&
)来逐行比较系列 - 更多docs
In [3]: bool_df['double_zero_check'] = (number_df['first'] != 0) & (number_df['second'] != 0 )
In [4]: bool_df['parity'] = bool_df['testA'] & bool_df['testB']
In [5]: bool_df
Out[5]:
testA testB double_zero_check parity
0 True True True True
1 False False False False
2 True False False False
答案 1 :(得分:2)
您必须使用按位和(&)运算符。 and
适用于布尔值,不适用于Pandas系列。
bool_df['double_zero_check'] = (number_df['first'] != 0) & (number_df['second'] != 0 )
bool_df['parity'] = bool_df['testA'] & bool_df['testB']