Gurobi模型修改速度慢,我可以直接修改约束矩阵吗?

时间:2015-11-01 10:42:09

标签: python mathematical-optimization linear-programming gurobi

我想对现有模型中的系数进行更改。目前(使用Python API)我正在循环约束并调用model.chgCoeff,但它很慢。有没有更快的方法,可能是在Python和/或C API中直接访问约束矩阵?

以下示例代码。它变慢的原因似乎主要是因为循环本身;用任何其他操作替换chgCoeff仍然很慢。通常我会通过使用向量操作而不是循环来解决这个问题,但是如果不能访问约束矩阵,我认为我不能这样做。

from __future__ import division
import gurobipy as gp
import numpy as np
import time
N = 300
M = 2000
m = gp.Model()
m.setParam('OutputFlag', False)

masks = [np.random.rand(N) for i in range(M)]
p = 1/np.random.rand(N)
rets = [p * masks[i] - 1 for i in range(M)]
v = np.random.rand(N)*10000 * np.round(np.random.rand(N))

t = m.addVar()
x = [m.addVar(vtype=gp.GRB.SEMICONT, lb=1000, ub=v[i]) for i in range(N)]
m.update()
cons = [m.addConstr(t <= gp.LinExpr(ret, x)) for ret in rets]

m.setObjective(t, gp.GRB.MAXIMIZE)
m.update()

start_time = time.time()
m.optimize()
solve_ms = int(((time.time() - start_time)*1000))

print('First solve took %s ms' % solve_ms)

p = 1/np.random.rand(N)
rets = [p * masks[i] - 1 for i in range(M)]
start_time = time.time()
for i in range(M):
    for j in range(N):
        if rets[i][j] != -1:
            m.chgCoeff(cons[i], x[j], -rets[i][j])
m.update()
update_ms = int(((time.time() - start_time)*1000))
print('Model update took %s ms' % update_ms)

start_time = time.time()
m.optimize()
solve_ms = int(((time.time() - start_time)*1000))
print('Second solve took %s ms' % solve_ms)

k = 2
start_time = time.time()
for i in range(M):
    for j in range(N):
        if rets[i][j] != -1:
            k *= rets[i][j]
solve_ms = int(((time.time() - start_time)*1000))
print('Plain loop took %s ms' % solve_ms)

R = np.array(rets)
start_time = time.time()
S = np.copy(R)
copy_ms = int(((time.time() - start_time)*1000))
print('np.copy() took %s ms' % copy_ms)

输出:

First solve took 1767 ms
Model update took 2051 ms
Second solve took 1872 ms
Plain loop took 1103 ms
np.copy() took 3 ms

对大小(2000,300)约束矩阵的np.copy调用需要3ms。是否有一个根本原因我错过了整个模型更新不能那么快?

1 个答案:

答案 0 :(得分:4)

您无法使用Python界面直接在Gurobi中访问约束矩阵。即使你可以,也不能进行np.copy操作,因为矩阵是CSR格式,而不是密集格式。要对约束进行批量更改,最好通过删除约束并添加新约束来修改约束矩阵。在你的情况下,每个变化都非常重要,以至于你不会从热情的开始中获得很多好处,所以你不会因为没有保留相同的约束对象而失去任何东西。

假设您在上面的代码中针对-1特殊情况调整了rets数组,以下代码将需要您想要并且更快。

for con in cons:               
    m.remove(con)
new_cons = [m.addConstr(t <= gp.LinExpr(ret, x)) for ret in rets]