我使用caffe而STILL无法输入。
这是我的solver.prototxt:
train_net: "auto_train.prototxt" test_net: "auto_test.prototxt" test_iter: 800 test_interval: 20 base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 lr_policy: "inv" gamma: 0.0001 power: 0.75 display: 100 max_iter: 10000 snapshot: 5000 snapshot_prefix: "sed" solver_mode: GPU
这是正在运行的python脚本:
import os PROJECT_HOME = '/home/romulus/code/project/' CAFFE_HOME = '/home/romulus/code/caffe/' os.chdir(PROJECT_HOME) import sys sys.path.insert(0, CAFFE_HOME + 'caffe/python') import caffe, h5py from pylab import * from caffe import layers as L, params as P OUTPUT_DIM = 8 def net(db, batch_size): n = caffe.NetSpec() n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LEVELDB, source=db, transform_param=dict(scale=1./255), ntop=2) n.ip1 = L.InnerProduct(n.data, num_output=500, weight_filler=dict(type='xavier')) n.relu1 = L.ReLU(n.ip1, in_place=True) n.ip2 = L.InnerProduct(n.relu1, num_output=500, weight_filler=dict(type='xavier')) n.relu2 = L.ReLU(n.ip2, in_place=True) n.ip3 = L.InnerProduct(n.relu2, num_output=OUTPUT_DIM, weight_filler=dict(type='xavier')) n.loss = L.SoftmaxWithLoss(n.ip3, n.label) return n.to_proto() with open('/home/romulus/code/project/auto_train.prototxt', 'w') as f: f.write(str(net('/home/romulus/code/project/traindb', 64))) with open('/home/romulus/code/project/auto_test.prototxt', 'w') as f: f.write(str(net('/home/romulus/code/project/testdb', 100))) caffe.set_device(0) caffe.set_mode_gpu() solver = caffe.SGDSolver(PROJECT_HOME + 'auto_solver.prototxt') solver.net.forward() # train net solver.test_nets[0].forward() # test net (there can be more than one) niter = 500 test_interval = 15 train_loss = zeros(niter) test_acc = zeros(int(np.ceil(niter * 1.0 / test_interval))) output = zeros((niter, 8, OUTPUT_DIM)) for it in range(niter): solver.step(1) # SGD by Caffe train_loss[it] = solver.net.blobs['loss'].data solver.test_nets[0].forward(start='ip1') output[it] = solver.test_nets[0].blobs['ip3'].data[:8] if it % test_interval == 0: print 'Iteration', it, 'testing...' correct = 0 for test_it in range(1): solver.test_nets[0].forward() correct += sum(solver.test_nets[0].blobs['ip3'].data.argmax(1) == solver.test_nets[0].blobs['label'].data) test_acc[it // test_interval] = correct * 1.0 / len(data) _, ax1 = subplots() ax2 = ax1.twinx() ax1.plot(arange(niter), train_loss) ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r') ax1.set_xlabel('iteration') ax1.set_ylabel('train loss') ax2.set_ylabel('test accuracy') _.savefig('converge.png')
手动生成数据,每个数据为1x256向量,所有相同的比例值为8 * label value
。这意味着,标签3的数据是[24,24,24,24,24 ......,24,24]。我有8个标签和80000个数据。
我的问题是,如果我将数据放入带有0,1,2,3,4,5,6,7,8,0,1,2,3,4,5...
等标签顺序的leveldb,那么caffe可以很好地训练网络。但如果按0,0,...,0,0,1,1,1,...,1,1,2,2,...
命令,caffe就无法学习。如果我将solver.prototxt中的test_iter
缩小为100,则caffe将始终说输出标签为0.
似乎caffe不会读取所有的训练数据,而只会读取前面的内容。但除了培训批次之外,我无法找到任何描述它的内容。
事实上,如果我将训练批量增加到80000,那么caffe会再次训练。虽然它很慢而且不是所谓的批次。
有人可以帮忙吗?谢谢!
答案 0 :(得分:3)
以随机顺序输入数据始终是一个好习惯:如果您输入的数据是"已排序"因此,每批次的渐变将采取非常简单的方向,从而产生较差的训练结果。
培训示例的数量caffe"看到"在培训期间max_iter
* batch_size
,因此如果您将这两个参数设置为超过您拥有的培训示例数,则应涵盖培训期间的所有数据。