我的火花版是1.3,我正在使用pyspark。
我有一个名为df的大型数据框。
from pyspark import SQLContext
sqlContext = SQLContext(sc)
df = sqlContext.parquetFile("events.parquet")
然后我选择数据帧的几列并尝试计算行数。这很好。
df3 = df.select("start", "end", "mrt")
print(type(df3))
print(df3.count())
然后我应用一个用户定义的函数将一个列从一个字符串转换为一个数字,这也可以正常工作
from pyspark.sql.functions import UserDefinedFunction
from pyspark.sql.types import LongType
CtI = UserDefinedFunction(lambda i: int(i), LongType())
df4 = df2.withColumn("mrt-2", CtI(df2.mrt))
但是,如果我尝试计算行数,我会得到一个异常,即使该类型显示它是一个数据帧,就像df3一样。
print(type(df4))
print(df4.count())
我的错误:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-10-53941e183807> in <module>()
8 df4 = df2.withColumn("mrt-2", CtI(df2.mrt))
9 print(type(df4))
---> 10 print(df4.count())
11 df3 = df4.select("start", "end", "mrt-2").withColumnRenamed("mrt-2", "mrt")
/data/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/lib/spark/python/pyspark/sql/dataframe.py in count(self)
299 2L
300 """
--> 301 return self._jdf.count()
302
303 def collect(self):
/data/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in __call__(self, *args)
536 answer = self.gateway_client.send_command(command)
537 return_value = get_return_value(answer, self.gateway_client,
--> 538 self.target_id, self.name)
539
540 for temp_arg in temp_args:
/data/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
298 raise Py4JJavaError(
299 'An error occurred while calling {0}{1}{2}.\n'.
--> 300 format(target_id, '.', name), value)
301 else:
302 raise Py4JError(
Py4JJavaError: An error occurred while calling o152.count.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 1379 in stage 12.0 failed 4 times, most recent failure: Lost task 1379.3 in stage 12.0 (TID 27021, va1ccogbds01.lab.ctllabs.io): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/data/0/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/jars/spark-assembly-1.3.0-cdh5.4.7-hadoop2.6.0-cdh5.4.7.jar/pyspark/worker.py", line 101, in main
process()
File "/data/0/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/jars/spark-assembly-1.3.0-cdh5.4.7-hadoop2.6.0-cdh5.4.7.jar/pyspark/worker.py", line 96, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/data/0/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/jars/spark-assembly-1.3.0-cdh5.4.7-hadoop2.6.0-cdh5.4.7.jar/pyspark/serializers.py", line 236, in dump_stream
vs = list(itertools.islice(iterator, batch))
File "/data/cloudera/parcels/CDH-5.4.7-1.cdh5.4.7.p0.3/lib/spark/python/pyspark/sql/functions.py", line 119, in <lambda>
File "<ipython-input-10-53941e183807>", line 7, in <lambda>
TypeError: int() argument must be a string or a number, not 'NoneType'
at org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:135)
at org.apache.spark.api.python.PythonRDD$$anon$1.next(PythonRDD.scala:98)
at org.apache.spark.api.python.PythonRDD$$anon$1.next(PythonRDD.scala:94)
at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at org.apache.spark.rdd.RDD$$anonfun$zip$1$$anon$1.hasNext(RDD.scala:743)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$6.apply(Aggregate.scala:127)
at org.apache.spark.sql.execution.Aggregate$$anonfun$execute$1$$anonfun$6.apply(Aggregate.scala:124)
at org.apache.spark.rdd.RDD$$anonfun$14.apply(RDD.scala:634)
at org.apache.spark.rdd.RDD$$anonfun$14.apply(RDD.scala:634)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:64)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1210)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1199)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1198)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1198)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:693)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:693)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1400)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1361)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
---------------------------------------------------------------------------
我是否正确使用用户定义的功能?知道为什么数据帧功能不能在数据帧上工作吗?
答案 0 :(得分:2)
从堆栈跟踪看起来,您的列包含None
值,该值会导致int
强制转换;您可以尝试将lambda函数更改为lambda i: int(i) if i else None
,以处理这种情况。
请注意,仅仅因为df2.withColumn("mrt-2", CtI(df2.mrt))
没有抛出错误并不意味着你的代码很好:Spark有懒惰的评价,所以它实际上不会尝试运行你的代码直到你拨打count
,collect
或类似内容。
答案 1 :(得分:0)
您使用的是spark-notebook吗? 我曾经在spark-notebook中遇到同样的错误。 但是相同的代码在spark-submit
中运行良好spark-submit YOURFILE.py