将用户定义的函数应用于特定的数据框列

时间:2015-06-01 21:57:26

标签: r dataframe

我在这里看到了R apply user define function on data frame columns的问题,但我的情况有点不同......

我想将我的数据帧的特定列传递给函数,然后将该函数的结果返回到我的数据帧的新列。

基本上,我有一个这样的数据框:

df.latitude1
df.longitude1
df.latitude2
df.longitude2

然后我有一个方法getDistance(lat1, lng1, lat2, lng2),我希望将该计算的结果返回到我的数据框中名为distance的新列中。

更新

> asn$geoDistance <- distHaversine(asn[,c("homeLocationGeoLat", "homeLocationGeoLng")], dat[,c("hostLocationGeoLat", "hostLocationGeoLng")])
Error in .pointsToMatrix(p1) : latitude < -90
> asn$homeLocationGeoLat[asn$homeLocationGeoLat < -90]
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [40] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [79] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[118] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[157] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[196] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[235] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[274] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[313] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[352] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[391] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[430] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[469] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[508] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[547] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> asn$hostLocationGeoLat[asn$hostLocationGeoLat < -90]
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [40] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [79] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[118] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[157] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[196] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[235] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[274] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[313] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[352] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[391] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[430] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[469] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[508] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[547] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[586] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[625] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[664] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
[703] NA NA NA NA NA NA NA NA NA
> newDf <- asn[, c('durationDays', 'homeLocationGeoLat', 'homeLocationGeoLng', 'hostLocationGeoLat', 'hostLocationGeoLng')]
> dput(head(newDf))
structure(list(durationDays = c(0, 0, 180, 0, 365, 0), homeLocationGeoLat = c(-23.5489433, 
1.2800945, 12.9715987, 25.7889689, 49.3063689, 25.271139), homeLocationGeoLng = c(-46.6388182, 
103.8509491, 77.5945627, -80.2264393, 8.6427693, 55.307485), 
    hostLocationGeoLat = c(37.4418834, 49.2774456, 52.3905689, 
    49.3063689, 53.3498053, 37.4418834), hostLocationGeoLng = c(-122.1430195, 
    7.1118995, 13.0644729, 8.6427693, -6.2603097, -122.1430195
    )), .Names = c("durationDays", "homeLocationGeoLat", "homeLocationGeoLng", 
"hostLocationGeoLat", "hostLocationGeoLng"), row.names = c(NA, 
6L), class = "data.frame")

1 个答案:

答案 0 :(得分:1)

您最好的选择可能是使用矢量化函数并同时计算所有点对的距离。例如,您可以使用distHaversine包中的geosphere函数一次性进行计算:

# 10000 points
set.seed(144)
dat <- data.frame(lat1=runif(10000, 10, 20), lng1=runif(10000, 10, 20),
                  lat2=runif(10000, 10, 20), lng2=runif(10000, 10, 20))

# Get all distances
library(geosphere)
dat$distance <- distHaversine(dat[,c("lng1", "lat1")], dat[,c("lng2", "lat2")])
head(dat$distance)
# [1] 293912.3 332583.2 870767.8 167362.9 371920.6 659368.1

如果您打算使用apply系列中的函数,您可能会遍历数据框的行,一次计算一个距离。虽然这会给出相同的答案,但速度要慢得多:

all.equal(distHaversine(dat[,c("lng1", "lat1")], dat[,c("lng2", "lat2")]),
          apply(dat, 1, function(x) distHaversine(x[c("lng1", "lat1")], x[c("lng2", "lat2")])))
# [1] TRUE
system.time(distHaversine(dat[,c("lng1", "lat1")], dat[,c("lng2", "lat2")]))
#    user  system elapsed 
#   0.005   0.001   0.008 
system.time(apply(dat, 1, function(x) distHaversine(x[c("lng1", "lat1")], x[c("lng2", "lat2")])))
#    user  system elapsed 
#   0.887   0.007   0.895 

100x减速的原因是,如果一次执行一行距离计算,则无法利用矢量化。