生成集合的排列 - 有效且区别

时间:2015-10-25 11:30:48

标签: c# algorithm performance recursion permutation

我建立了here的代码。我想生成一组的所有排列,例如(取自线程):

Collection: 1, 2, 3
Permutations: {1, 2, 3}
              {1, 3, 2}
              {2, 1, 3}
              {2, 3, 1}
              {3, 1, 2}
              {3, 2, 1}

每组都有enter image description here种可能的排列,但这不是我想要实现的。考虑到以下集合:

enter image description here

这会产生enter image description here个排列,这是enter image description here的极端情况。这需要非常长的时间来计算,因为每个零被认为是唯一的。

而不是那样,我只想生成不同的排列。如果我们这样做,那么只有

enter image description here

排列remaining,因为18项是相同的(k)。

现在,我可以运行上述线程中的代码并将结果存储在HashSet中,从而消除了重复的排列。但是,这将是非常低效的。我正在寻找一种能够直接生成排列的算法。

4 个答案:

答案 0 :(得分:7)

使用Swap算法查找排列,您可以直接排除产生重复排列的部分。该算法可在互联网上获得,您可以找到更多相关信息。

private static void Main(string[] args)
{
    List<int> set = new List<int>
    {
        20, 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    };
    var permutes = Permute(set);

    Console.WriteLine(permutes.Count); // outputs 58140
}

private static List<int[]> Permute(List<int> set)
{
    List<int[]> result = new List<int[]>(); 

    Action<int> permute = null;
    permute = start =>
    {
        if (start == set.Count)
        {
            result.Add(set.ToArray());
        }
        else
        {
            List<int> swaps = new List<int>();
            for (int i = start; i < set.Count; i++)
            {
                if (swaps.Contains(set[i])) continue; // skip if we already done swap with this item
                swaps.Add(set[i]);

                Swap(set, start, i);
                permute(start + 1); 
                Swap(set, start, i);
            }
        }
    };

    permute(0);

    return result;
}

private static void Swap(List<int> set, int index1, int index2)
{
    int temp = set[index1];
    set[index1] = set[index2];
    set[index2] = temp;
}

这是显示交换算法如何工作的图像。

enter image description here

所以你有{A,B,C}, {A,C,B}, {B,A,C}, {B,C,A}, {C,B,A}, {C,A,B}

现在考虑AB是平等的。我用photoshop编辑了图像(对不起,如果我很可怕!)并用B替换A。正如您在图片中看到的那样

enter image description here

我发现图像中有重复的内容。如果您跳过它们,您将获得{A,A,C}, {A,C,A}, {C,A,A}

您必须存储已交换的项目,因此如果项目相同且我们已经进行了交换,我们只需跳过以防止欺骗

if (swaps.Contains(set[i])) continue; // skip if we already done swap with this item
swaps.Add(set[i]); // else add it to the list of swaps.

如果您删除此部分进行测试,则此算法将产生重复的排列,控制台将输出n!

答案 1 :(得分:2)

这是迄今为止我提出的最佳解决方案。欢迎提出优化建议。它正好返回n!/ k!项目

大约需要1秒来置换{20,4,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }。

private static IEnumerable<int[]> Permute(int[] list)
{
    if (list.Length > 1)
    {    
        int n = list[0];
        foreach (int[] subPermute in Permute(list.Skip(1).ToArray()))
        {    
            for (int index = 0; index <= subPermute.Length; index++)
            {
                int[] pre = subPermute.Take(index).ToArray();
                int[] post = subPermute.Skip(index).ToArray();

                if (post.Contains(n))
                    continue;

                yield return pre.Concat(new[] { n }).Concat(post).ToArray();
            }    
        }
    }
    else
    {
        yield return list;
    }
}

答案 2 :(得分:0)

让我们试一试:

Knuths
1. Find the largest index j such that a[j] < a[j + 1]. If no
such index exists, the permutation is the last permutation.

{20,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
   >  > = = = = = = = = = = = = = = = = =

糟糕,没有索引ja[j] < a[j + 1]。但由于我们需要所有不同的排列,我们可以对每个数组进行排序并保证我们从头开始:

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,20}

1. Find the largest index j such that a[j] < a[j + 1]. If no
such index exists, the permutation is the last permutation.

j = 18 since a[18] < a[19]

2. Find the largest index l such that a[j] < a[l]. Since j + 1
is such an index, l is well defined and satisfies j < l.

l = 19 since a[18] < a[19]

3. Swap a[j] with a[l].

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,10}

4. Reverse the sequence from a[j + 1] up to and including the final element a[n].

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,10}

让我们再做几点:

{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,10}
yields {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,20}
yields {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,20,0}
yields {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,0,10}
yields {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,10,0}
yields {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,20}
...

正如您所看到的那样,大型元素稳定地(明显地)向左移动,直到:

{10,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
yields {20,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

最终没有重复排列。

答案 3 :(得分:0)

我以前做过这个问题。您只需要先对数组进行排序,然后使用boolean []被访问的数组来标记您访问过的元素。我在Java中使用回溯的解决方案:

public class Solution {
    public List<List<Integer>> permuteUnique(int[] num) {
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        List<Integer> list = new ArrayList<Integer>();
        boolean[] visited = new boolean[num.length];

        Arrays.sort(num);
        helper(result, list, num, visited);

        return result;
    }

    private void helper(List<List<Integer>> result, List<Integer> list,
            int[] num, boolean[] visited) {
        for (int i = 0; i < num.length; i++) {
            if (visited[i]
                    || (i > 0 && num[i] == num[i - 1] && !visited[i - 1])) {
                continue;
            }
            list.add(num[i]);
            visited[i] = true;
            if (list.size() == num.length) {
                result.add(new ArrayList<Integer>(list));
            } else {
                helper(result, list, num, visited);
            }
            list.remove(list.size() - 1);
            visited[i] = false;
        }
    }
}