OpenCV文档give the following SVM kernel type example:
对以下2D测试用例和四个类的不同内核进行比较。使用auto_train训练了四个SVM :: C_SVC SVM(一个对抗休息)。评估三种不同的内核(SVM :: CHI2,SVM :: INTER,SVM :: RBF)。颜色描绘了具有最高分数的类。 Bright表示max-score> 0,暗意味着最大分数<0。 0
在哪里可以找到生成此示例的示例代码?
具体来说,SVM predict()
方法可能会返回标签值而不是 max-score 。如何返回 max-score ?
请注意,引用声明它使用的是SVM::C_SVC
分类,而不是回归类型。
答案 0 :(得分:4)
您可以使用2级SVM获得分数,如果您通过RAW_OUTPUT
预测:
// svm.cpp, SVMImpl::predict(...) , line 1917
bool returnDFVal = (flags & RAW_OUTPUT) != 0;
// svm.cpp, PredictBody::operator(), line 1896,
float result = returnDFVal && class_count == 2 ?
(float)sum : (float)(svm->class_labels.at<int>(k));
然后你需要训练4个不同的2级SVM,其中一个对抗休息。
这些是我对这些样本的结果:
INTER 与trainAuto
CHI2 与trainAuto
RBF 与train
(C = 0.1, gamma = 0.001
)(在这种情况下trainAuto
过度使用)
这是代码。您可以使用trainAuto
布尔变量启用AUTO_TRAIN_ENABLED
,并且可以设置KERNEL
以及图像尺寸等。
#include <opencv2/opencv.hpp>
#include <vector>
#include <algorithm>
using namespace std;
using namespace cv;
using namespace cv::ml;
int main()
{
const int WIDTH = 512;
const int HEIGHT = 512;
const int N_SAMPLES_PER_CLASS = 10;
const float NON_LINEAR_SAMPLES_RATIO = 0.1;
const int KERNEL = SVM::CHI2;
const bool AUTO_TRAIN_ENABLED = false;
int N_NON_LINEAR_SAMPLES = N_SAMPLES_PER_CLASS * NON_LINEAR_SAMPLES_RATIO;
int N_LINEAR_SAMPLES = N_SAMPLES_PER_CLASS - N_NON_LINEAR_SAMPLES;
vector<Scalar> colors{Scalar(255,0,0), Scalar(0,255,0), Scalar(0,0,255), Scalar(0,255,255)};
vector<Vec3b> colorsv{ Vec3b(255, 0, 0), Vec3b(0, 255, 0), Vec3b(0, 0, 255), Vec3b(0, 255, 255) };
vector<Vec3b> colorsv_shaded{ Vec3b(200, 0, 0), Vec3b(0, 200, 0), Vec3b(0, 0, 200), Vec3b(0, 200, 200) };
Mat1f data(4 * N_SAMPLES_PER_CLASS, 2);
Mat1i labels(4 * N_SAMPLES_PER_CLASS, 1);
RNG rng(0);
////////////////////////
// Set training data
////////////////////////
// Class 1
Mat1f class1 = data.rowRange(0, 0.5 * N_LINEAR_SAMPLES);
Mat1f x1 = class1.colRange(0, 1);
Mat1f y1 = class1.colRange(1, 2);
rng.fill(x1, RNG::UNIFORM, Scalar(1), Scalar(WIDTH));
rng.fill(y1, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT / 8));
class1 = data.rowRange(0.5 * N_LINEAR_SAMPLES, 1 * N_LINEAR_SAMPLES);
x1 = class1.colRange(0, 1);
y1 = class1.colRange(1, 2);
rng.fill(x1, RNG::UNIFORM, Scalar(1), Scalar(WIDTH));
rng.fill(y1, RNG::UNIFORM, Scalar(7*HEIGHT / 8), Scalar(HEIGHT));
class1 = data.rowRange(N_LINEAR_SAMPLES, 1 * N_SAMPLES_PER_CLASS);
x1 = class1.colRange(0, 1);
y1 = class1.colRange(1, 2);
rng.fill(x1, RNG::UNIFORM, Scalar(1), Scalar(WIDTH));
rng.fill(y1, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Class 2
Mat1f class2 = data.rowRange(N_SAMPLES_PER_CLASS, N_SAMPLES_PER_CLASS + N_LINEAR_SAMPLES);
Mat1f x2 = class2.colRange(0, 1);
Mat1f y2 = class2.colRange(1, 2);
rng.fill(x2, RNG::NORMAL, Scalar(3 * WIDTH / 4), Scalar(WIDTH/16));
rng.fill(y2, RNG::NORMAL, Scalar(HEIGHT / 2), Scalar(HEIGHT/4));
class2 = data.rowRange(N_SAMPLES_PER_CLASS + N_LINEAR_SAMPLES, 2 * N_SAMPLES_PER_CLASS);
x2 = class2.colRange(0, 1);
y2 = class2.colRange(1, 2);
rng.fill(x2, RNG::UNIFORM, Scalar(1), Scalar(WIDTH));
rng.fill(y2, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Class 3
Mat1f class3 = data.rowRange(2 * N_SAMPLES_PER_CLASS, 2 * N_SAMPLES_PER_CLASS + N_LINEAR_SAMPLES);
Mat1f x3 = class3.colRange(0, 1);
Mat1f y3 = class3.colRange(1, 2);
rng.fill(x3, RNG::NORMAL, Scalar(WIDTH / 4), Scalar(WIDTH/8));
rng.fill(y3, RNG::NORMAL, Scalar(HEIGHT / 2), Scalar(HEIGHT/8));
class3 = data.rowRange(2*N_SAMPLES_PER_CLASS + N_LINEAR_SAMPLES, 3 * N_SAMPLES_PER_CLASS);
x3 = class3.colRange(0, 1);
y3 = class3.colRange(1, 2);
rng.fill(x3, RNG::UNIFORM, Scalar(1), Scalar(WIDTH));
rng.fill(y3, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Class 4
Mat1f class4 = data.rowRange(3 * N_SAMPLES_PER_CLASS, 3 * N_SAMPLES_PER_CLASS + 0.5 * N_LINEAR_SAMPLES);
Mat1f x4 = class4.colRange(0, 1);
Mat1f y4 = class4.colRange(1, 2);
rng.fill(x4, RNG::NORMAL, Scalar(WIDTH / 2), Scalar(WIDTH / 16));
rng.fill(y4, RNG::NORMAL, Scalar(HEIGHT / 4), Scalar(HEIGHT / 16));
class4 = data.rowRange(3 * N_SAMPLES_PER_CLASS + 0.5 * N_LINEAR_SAMPLES, 3 * N_SAMPLES_PER_CLASS + N_LINEAR_SAMPLES);
x4 = class4.colRange(0, 1);
y4 = class4.colRange(1, 2);
rng.fill(x4, RNG::NORMAL, Scalar(WIDTH / 2), Scalar(WIDTH / 16));
rng.fill(y4, RNG::NORMAL, Scalar(3 * HEIGHT / 4), Scalar(HEIGHT / 16));
class4 = data.rowRange(3 * N_SAMPLES_PER_CLASS + N_LINEAR_SAMPLES, 4 * N_SAMPLES_PER_CLASS);
x4 = class4.colRange(0, 1);
y4 = class4.colRange(1, 2);
rng.fill(x4, RNG::UNIFORM, Scalar(1), Scalar(WIDTH));
rng.fill(y4, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Labels
labels.rowRange(0*N_SAMPLES_PER_CLASS, 1*N_SAMPLES_PER_CLASS).setTo(1);
labels.rowRange(1*N_SAMPLES_PER_CLASS, 2*N_SAMPLES_PER_CLASS).setTo(2);
labels.rowRange(2*N_SAMPLES_PER_CLASS, 3*N_SAMPLES_PER_CLASS).setTo(3);
labels.rowRange(3*N_SAMPLES_PER_CLASS, 4*N_SAMPLES_PER_CLASS).setTo(4);
// Draw training data
Mat3b samples(HEIGHT, WIDTH, Vec3b(0,0,0));
for (int i = 0; i < labels.rows; ++i)
{
circle(samples, Point(data(i, 0), data(i, 1)), 3, colors[labels(i,0) - 1], CV_FILLED);
}
//////////////////////////
// SVM
//////////////////////////
// SVM label 1
Ptr<SVM> svm1 = SVM::create();
svm1->setType(SVM::C_SVC);
svm1->setKernel(KERNEL);
Mat1i labels1 = (labels != 1) / 255;
if (AUTO_TRAIN_ENABLED)
{
Ptr<TrainData> td1 = TrainData::create(data, ROW_SAMPLE, labels1);
svm1->trainAuto(td1);
}
else
{
svm1->setC(0.1);
svm1->setGamma(0.001);
svm1->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
svm1->train(data, ROW_SAMPLE, labels1);
}
// SVM label 2
Ptr<SVM> svm2 = SVM::create();
svm2->setType(SVM::C_SVC);
svm2->setKernel(KERNEL);
Mat1i labels2 = (labels != 2) / 255;
if (AUTO_TRAIN_ENABLED)
{
Ptr<TrainData> td2 = TrainData::create(data, ROW_SAMPLE, labels2);
svm2->trainAuto(td2);
}
else
{
svm2->setC(0.1);
svm2->setGamma(0.001);
svm2->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
svm2->train(data, ROW_SAMPLE, labels2);
}
// SVM label 3
Ptr<SVM> svm3 = SVM::create();
svm3->setType(SVM::C_SVC);
svm3->setKernel(KERNEL);
Mat1i labels3 = (labels != 3) / 255;
if (AUTO_TRAIN_ENABLED)
{
Ptr<TrainData> td3 = TrainData::create(data, ROW_SAMPLE, labels3);
svm3->trainAuto(td3);
}
else
{
svm3->setC(0.1);
svm3->setGamma(0.001);
svm3->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
svm3->train(data, ROW_SAMPLE, labels3);
}
// SVM label 4
Ptr<SVM> svm4 = SVM::create();
svm4->setType(SVM::C_SVC);
svm4->setKernel(KERNEL);
Mat1i labels4 = (labels != 4) / 255;
if (AUTO_TRAIN_ENABLED)
{
Ptr<TrainData> td4 = TrainData::create(data, ROW_SAMPLE, labels4);
svm4->trainAuto(td4);
}
else
{
svm4->setC(0.1);
svm4->setGamma(0.001);
svm4->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
svm4->train(data, ROW_SAMPLE, labels4);
}
//////////////////////////
// Show regions
//////////////////////////
Mat3b regions(HEIGHT, WIDTH);
Mat1f R(HEIGHT, WIDTH);
Mat1f R1(HEIGHT, WIDTH);
Mat1f R2(HEIGHT, WIDTH);
Mat1f R3(HEIGHT, WIDTH);
Mat1f R4(HEIGHT, WIDTH);
for (int r = 0; r < HEIGHT; ++r)
{
for (int c = 0; c < WIDTH; ++c)
{
Mat1f sample = (Mat1f(1,2) << c, r);
vector<float> responses(4);
responses[0] = svm1->predict(sample, noArray(), StatModel::RAW_OUTPUT);
responses[1] = svm2->predict(sample, noArray(), StatModel::RAW_OUTPUT);
responses[2] = svm3->predict(sample, noArray(), StatModel::RAW_OUTPUT);
responses[3] = svm4->predict(sample, noArray(), StatModel::RAW_OUTPUT);
int best_class = distance(responses.begin(), max_element(responses.begin(), responses.end()));
float best_response = responses[best_class];
// View responses for each SVM, and the best responses
R(r,c) = best_response;
R1(r, c) = responses[0];
R2(r, c) = responses[1];
R3(r, c) = responses[2];
R4(r, c) = responses[3];
if (best_response >= 0) {
regions(r, c) = colorsv[best_class];
}
else {
regions(r, c) = colorsv_shaded[best_class];
}
}
}
imwrite("svm_samples.png", samples);
imwrite("svm_x.png", regions);
imshow("Samples", samples);
imshow("Regions", regions);
waitKey();
return 0;
}