一次将多个列强制转换为因子

时间:2015-10-16 21:47:10

标签: r dataframe r-factor

我有一个如下所示的示例数据框:

data <- data.frame(matrix(sample(1:40), 4, 10, dimnames = list(1:4, LETTERS[1:10])))

我想知道如何选择多个列并将它们一起转换为因子。我通常以data$A = as.factor(data$A)之类的方式来做。但是当数据框非常大并且包含大量列时,这种方式将非常耗时。有谁知道更好的方法吗?

10 个答案:

答案 0 :(得分:86)

选择一些列来强制使用因素:

cols <- c("A", "C", "D", "H")

使用lapply()强制替换所选列:

data[cols] <- lapply(data[cols], factor)  ## as.factor() could also be used

检查结果:

sapply(data, class)
#        A         B         C         D         E         F         G 
# "factor" "integer"  "factor"  "factor" "integer" "integer" "integer" 
#        H         I         J 
# "factor" "integer" "integer" 

答案 1 :(得分:28)

以下是使用dplyr的选项。来自%<>%的{​​{1}}运算符使用结果值更新lhs对象。

magrittr

如果我们使用的是library(magrittr) library(dplyr) cols <- c("A", "C", "D", "H") data %<>% mutate_each_(funs(factor(.)),cols) str(data) #'data.frame': 4 obs. of 10 variables: # $ A: Factor w/ 4 levels "23","24","26",..: 1 2 3 4 # $ B: int 15 13 39 16 # $ C: Factor w/ 4 levels "3","5","18","37": 2 1 3 4 # $ D: Factor w/ 4 levels "2","6","28","38": 3 1 4 2 # $ E: int 14 4 22 20 # $ F: int 7 19 36 27 # $ G: int 35 40 21 10 # $ H: Factor w/ 4 levels "11","29","32",..: 1 4 3 2 # $ I: int 17 1 9 25 # $ J: int 12 30 8 33 ,请使用data.table循环for

set

或者我们可以指定&#39; cols&#39;在setDT(data) for(j in cols){ set(data, i=NULL, j=j, value=factor(data[[j]])) } 并将(及.SDcols)rhs分配给&#39; cols&#39;

:=

答案 2 :(得分:16)

最新tidyverse方式是使用mutate_at函数:

library(tidyverse)
library(magrittr)
set.seed(88)

data <- data.frame(matrix(sample(1:40), 4, 10, dimnames = list(1:4, LETTERS[1:10])))
cols <- c("A", "C", "D", "H")

data %<>% mutate_at(cols, funs(factor(.)))
str(data)
 $ A: Factor w/ 4 levels "5","17","18",..: 2 1 4 3   
 $ B: int  36 35 2 26
 $ C: Factor w/ 4 levels "22","31","32",..: 1 2 4 3
 $ D: Factor w/ 4 levels "1","9","16","39": 3 4 1 2
 $ E: int  3 14 30 38
 $ F: int  27 15 28 37
 $ G: int  19 11 6 21
 $ H: Factor w/ 4 levels "7","12","20",..: 1 3 4 2
 $ I: int  23 24 13 8
 $ J: int  10 25 4 33

答案 3 :(得分:5)

并且,为了完整性和关于this question asking about changing string columns only,有mutate_if

data <- cbind(stringVar = sample(c("foo","bar"),10,replace=TRUE),
              data.frame(matrix(sample(1:40), 10, 10, dimnames = list(1:10, LETTERS[1:10]))),stringsAsFactors=FALSE)     

factoredData = data %>% mutate_if(is.character,funs(factor(.)))

答案 4 :(得分:1)

您可以使用mutate_ifdplyr):

例如,在integer中强制factor

mydata=structure(list(a = 1:10, b = 1:10, c = c("a", "a", "b", "b", 
"c", "c", "c", "c", "c", "c")), row.names = c(NA, -10L), class = c("tbl_df", 
"tbl", "data.frame"))

# A tibble: 10 x 3
       a     b c    
   <int> <int> <chr>
 1     1     1 a    
 2     2     2 a    
 3     3     3 b    
 4     4     4 b    
 5     5     5 c    
 6     6     6 c    
 7     7     7 c    
 8     8     8 c    
 9     9     9 c    
10    10    10 c   

使用功能:

library(dplyr)

mydata%>%
    mutate_if(is.integer,as.factor)

# A tibble: 10 x 3
       a     b c    
   <fct> <fct> <chr>
 1     1     1 a    
 2     2     2 a    
 3     3     3 b    
 4     4     4 b    
 5     5     5 c    
 6     6     6 c    
 7     7     7 c    
 8     8     8 c    
 9     9     9 c    
10    10    10 c    

答案 5 :(得分:0)

如果您有另一个目标是从表中获取值然后使用它们进行转换,您可以尝试以下方式

### pre processing
ind <- bigm.train[,lapply(.SD,is.character)]
ind <- names(ind[,.SD[T]])
### Convert multiple columns to factor
bigm.train[,(ind):=lapply(.SD,factor),.SDcols=ind]

这将选择特定于字符的列,然后将它们转换为因子。

答案 6 :(得分:0)

这是一个data.table示例。在此示例中,我使用了grep,因为那是我经常通过对名称进行部分匹配来选择许多列。

library(data.table)
data <- data.table(matrix(sample(1:40), 4, 10, dimnames = list(1:4, LETTERS[1:10])))

factorCols <- grep(pattern = "A|C|D|H", x = names(data), value = TRUE)

data[, (factorCols) := lapply(.SD, as.factor), .SDcols = factorCols]

答案 7 :(得分:0)

这是使用modify_at()软件包中的purrr函数的另一种方法。

library(purrr)

# Data frame with only integer columns
data <- data.frame(matrix(sample(1:40), 4, 10, dimnames = list(1:4, LETTERS[1:10])))

# Modify specified columns to a factor class
data_with_factors <- data %>%
    purrr::modify_at(c("A", "C", "E"), factor)


# Check the results:
str(data_with_factors)
# 'data.frame':   4 obs. of  10 variables:
#  $ A: Factor w/ 4 levels "8","12","33",..: 1 3 4 2
#  $ B: int  25 32 2 19
#  $ C: Factor w/ 4 levels "5","15","35",..: 1 3 4 2
#  $ D: int  11 7 27 6
#  $ E: Factor w/ 4 levels "1","4","16","20": 2 3 1 4
#  $ F: int  21 23 39 18
#  $ G: int  31 14 38 26
#  $ H: int  17 24 34 10
#  $ I: int  13 28 30 29
#  $ J: int  3 22 37 9

答案 8 :(得分:0)

似乎在data.frame上使用SAPPLY将变量立即转换为因子不起作用,因为它会产生矩阵/数组。我的方法是改为使用LAPPLY,如下所示。

## let us create a data.frame here

class <- c("7", "6", "5", "3")

cash <- c(100, 200, 300, 150)

height <- c(170, 180, 150, 165)

people <- data.frame(class, cash, height)

class(people) ## This is a dataframe 

## We now apply lapply to the data.frame as follows.

bb <- lapply(people, as.factor) %>% data.frame() 

## The lapply part returns a list which we coerce back to a data.frame

class(bb) ## A data.frame

##Now let us check the classes of the variables 

class(bb$class)

class(bb$height)

class(bb$cash) ## as expected, are all factors. 

答案 9 :(得分:0)

一个简单且更新的解决方案

data <- data %>%
    mutate_at(cols, list(~factor(.)))