我试图与Cassandra一起使用Python异步来查看我是否可以比CQL COPY命令更快地向Cassandra写入记录。
我的python代码如下所示:
from cassandra.cluster import Cluster
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement
cluster = Cluster(['1.2.1.4'])
session = cluster.connect('test')
with open('dataImport.txt') as f:
for line in f:
query = SimpleStatement (
"INSERT INTO tstTable (id, accts, info) VALUES (%s) " %(line),
consistency_level=ConsistencyLevel.ONE)
session.execute_async (query)
但是它给了我与COPY命令相同的性能...大约2,700行/秒....如果异步更快吗?
我需要在python中使用多线程吗?只是阅读它,但不知道它是如何适应这个......
编辑:
所以我在网上找到了一些我试图修改但却无法完成工作的东西......到目前为止我已经有了这个...而且我将文件分成3个文件到/ Data / toImport / dir:
import multiprocessing
import time
import os
from cassandra.cluster import Cluster
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement
cluster = Cluster(['1.2.1.4'])
session = cluster.connect('test')
def mp_worker(inputArg):
with open(inputArg[0]) as f:
for line in f:
query = SimpleStatement (
"INSERT INTO CustInfo (cust_id, accts, offers) values (%s)" %(line),
consistency_level=ConsistencyLevel.ONE)
session.execute_async (query)
def mp_handler(inputData, nThreads = 8):
p = multiprocessing.Pool(nThreads)
p.map(mp_worker, inputData, chunksize=1)
p.close()
p.join()
if __name__ == '__main__':
temp_in_data = file_list
start = time.time()
in_dir = '/Data/toImport/'
N_Proc = 8
file_data = [(in_dir) for i in temp_in_data]
print '----------------------------------Start Working!!!!-----------------------------'
print 'Number of Processes using: %d' %N_Proc
mp_handler(file_data, N_Proc)
end = time.time()
time_elapsed = end - start
print '----------------------------------All Done!!!!-----------------------------'
print "Time elapsed: {} seconds".format(time_elapsed)
但得到此错误:
Traceback (most recent call last):
File "multiCass.py", line 27, in <module>
temp_in_data = file_list
NameError: name 'file_list' is not defined
答案 0 :(得分:3)
这篇文章A Multiprocessing Example for Improved Bulk Data Throughput提供了提高批量数据提取性能所需的所有详细信息。基本上有3种机制,可以根据您的使用情况进行额外的调整。 HW:
批量和并发的大小是您必须自己玩的变量。
答案 1 :(得分:2)
让它像这样工作:
import multiprocessing
import time
import os
from cassandra.cluster import Cluster
from cassandra import ConsistencyLevel
from cassandra.query import SimpleStatement
def mp_worker(inputArg):
cluster = Cluster(['1.2.1.4'])
session = cluster.connect('poc')
with open(inputArg[0]) as f:
for line in f:
query = SimpleStatement (
"INSERT INTO testTable (cust_id, accts, offers) values (%s)" %(line),
consistency_level=ConsistencyLevel.ONE)
session.execute_async (query)
def mp_handler(inputData, nThreads = 8):
p = multiprocessing.Pool(nThreads)
p.map(mp_worker, inputData, chunksize=1)
p.close()
p.join()
if __name__ == '__main__':
temp_in_data = ['/toImport/part-00000', '/toImport/part-00001', '/toImport/part-00002']
start = time.time()
N_Proc = 3
file_data = [(i,) for i in temp_in_data]
print '----------------------------------Start Working!!!!-----------------------------'
print 'Number of Processes using: %d' %N_Proc
mp_handler(file_data, N_Proc)
end = time.time()
time_elapsed = end - start
print '----------------------------------All Done!!!!-----------------------------'
print "Time elapsed: {} seconds".format(time_elapsed)