我想使用带有矢量标签的caffe,而不是整数。我已经检查了一些答案,看来HDF5似乎更好。但后来我一直坚持如下错误:
accuracy_layer.cpp:34]检查失败:
outer_num_ * inner_num_ == bottom[1]->count()
(50对200)标签数量必须与预测数量相匹配;例如,如果标签轴== 1且预测形状为(N,C,H,W),则标签计数(标签数量)必须为N*H*W
,整数值为{0,1,......, C-1}。
将HDF5创建为:
f = h5py.File('train.h5', 'w')
f.create_dataset('data', (1200, 128), dtype='f8')
f.create_dataset('label', (1200, 4), dtype='f4')
我的网络由以下人员生成:
def net(hdf5, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2)
n.ip1 = L.InnerProduct(n.data, num_output=50, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.ip1, in_place=True)
n.ip2 = L.InnerProduct(n.relu1, num_output=50, weight_filler=dict(type='xavier'))
n.relu2 = L.ReLU(n.ip2, in_place=True)
n.ip3 = L.InnerProduct(n.relu1, num_output=4, weight_filler=dict(type='xavier'))
n.accuracy = L.Accuracy(n.ip3, n.label)
n.loss = L.SoftmaxWithLoss(n.ip3, n.label)
return n.to_proto()
with open(PROJECT_HOME + 'auto_train.prototxt', 'w') as f:
f.write(str(net('/home/romulus/code/project/train.h5list', 50)))
with open(PROJECT_HOME + 'auto_test.prototxt', 'w') as f:
f.write(str(net('/home/romulus/code/project/test.h5list', 20)))
似乎我应该增加标签号并将事物放在整数而不是数组中,但如果我这样做,caffe抱怨数据的数量和标签不相等,那就存在。
那么,提供多标签数据的正确格式是什么?
另外,我很想知道为什么没有人只是简单地写出HDF5如何映射到caffe blob的数据格式?
答案 0 :(得分:23)
回答这个问题的标题:
HDF5文件应该在root中有两个数据集,名为" data"和"标签"分别。形状为(data amount
,dimension
)。我只使用一维数据,因此我不确定channel
,width
和height
的顺序是什么。也许没关系。 dtype
应该浮动或加倍。
使用h5py
创建列车集的示例代码为:
import h5py, os import numpy as np f = h5py.File('train.h5', 'w') # 1200 data, each is a 128-dim vector f.create_dataset('data', (1200, 128), dtype='f8') # Data's labels, each is a 4-dim vector f.create_dataset('label', (1200, 4), dtype='f4') # Fill in something with fixed pattern # Regularize values to between 0 and 1, or SigmoidCrossEntropyLoss will not work for i in range(1200): a = np.empty(128) if i % 4 == 0: for j in range(128): a[j] = j / 128.0; l = [1,0,0,0] elif i % 4 == 1: for j in range(128): a[j] = (128 - j) / 128.0; l = [1,0,1,0] elif i % 4 == 2: for j in range(128): a[j] = (j % 6) / 128.0; l = [0,1,1,0] elif i % 4 == 3: for j in range(128): a[j] = (j % 4) * 4 / 128.0; l = [1,0,1,1] f['data'][i] = a f['label'][i] = l f.close()
此外,不需要精确层,只需将其移除即可。下一个问题是损失层。由于SoftmaxWithLoss
只有一个输出(维度的索引具有最大值),因此无法用于多标签问题。感谢Adian和Shai,我发现SigmoidCrossEntropyLoss
在这种情况下很好。
以下是完整的代码,包括数据创建,培训网络和获取测试结果:
main.py(从caffe lanet示例修改)
import os, sys PROJECT_HOME = '.../project/' CAFFE_HOME = '.../caffe/' os.chdir(PROJECT_HOME) sys.path.insert(0, CAFFE_HOME + 'caffe/python') import caffe, h5py from pylab import * from caffe import layers as L def net(hdf5, batch_size): n = caffe.NetSpec() n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2) n.ip1 = L.InnerProduct(n.data, num_output=50, weight_filler=dict(type='xavier')) n.relu1 = L.ReLU(n.ip1, in_place=True) n.ip2 = L.InnerProduct(n.relu1, num_output=50, weight_filler=dict(type='xavier')) n.relu2 = L.ReLU(n.ip2, in_place=True) n.ip3 = L.InnerProduct(n.relu2, num_output=4, weight_filler=dict(type='xavier')) n.loss = L.SigmoidCrossEntropyLoss(n.ip3, n.label) return n.to_proto() with open(PROJECT_HOME + 'auto_train.prototxt', 'w') as f: f.write(str(net(PROJECT_HOME + 'train.h5list', 50))) with open(PROJECT_HOME + 'auto_test.prototxt', 'w') as f: f.write(str(net(PROJECT_HOME + 'test.h5list', 20))) caffe.set_device(0) caffe.set_mode_gpu() solver = caffe.SGDSolver(PROJECT_HOME + 'auto_solver.prototxt') solver.net.forward() solver.test_nets[0].forward() solver.step(1) niter = 200 test_interval = 10 train_loss = zeros(niter) test_acc = zeros(int(np.ceil(niter * 1.0 / test_interval))) print len(test_acc) output = zeros((niter, 8, 4)) # The main solver loop for it in range(niter): solver.step(1) # SGD by Caffe train_loss[it] = solver.net.blobs['loss'].data solver.test_nets[0].forward(start='data') output[it] = solver.test_nets[0].blobs['ip3'].data[:8] if it % test_interval == 0: print 'Iteration', it, 'testing...' correct = 0 data = solver.test_nets[0].blobs['ip3'].data label = solver.test_nets[0].blobs['label'].data for test_it in range(100): solver.test_nets[0].forward() # Positive values map to label 1, while negative values map to label 0 for i in range(len(data)): for j in range(len(data[i])): if data[i][j] > 0 and label[i][j] == 1: correct += 1 elif data[i][j] %lt;= 0 and label[i][j] == 0: correct += 1 test_acc[int(it / test_interval)] = correct * 1.0 / (len(data) * len(data[0]) * 100) # Train and test done, outputing convege graph _, ax1 = subplots() ax2 = ax1.twinx() ax1.plot(arange(niter), train_loss) ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r') ax1.set_xlabel('iteration') ax1.set_ylabel('train loss') ax2.set_ylabel('test accuracy') _.savefig('converge.png') # Check the result of last batch print solver.test_nets[0].blobs['ip3'].data print solver.test_nets[0].blobs['label'].data
h5list文件只包含每行中h5文件的路径:
train.h5list
/home/foo/bar/project/train.h5
test.h5list
/home/foo/bar/project/test.h5
和解算器:
auto_solver.prototxt
train_net: "auto_train.prototxt" test_net: "auto_test.prototxt" test_iter: 10 test_interval: 20 base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 lr_policy: "inv" gamma: 0.0001 power: 0.75 display: 100 max_iter: 10000 snapshot: 5000 snapshot_prefix: "sed" solver_mode: GPU
最后一批结果:
[[ 35.91593933 -37.46276474 -6.2579031 -6.30313492] [ 42.69248581 -43.00864792 13.19664764 -3.35134125] [ -1.36403108 1.38531208 2.77786589 -0.34310576] [ 2.91686511 -2.88944006 4.34043217 0.32656598] ... [ 35.91593933 -37.46276474 -6.2579031 -6.30313492] [ 42.69248581 -43.00864792 13.19664764 -3.35134125] [ -1.36403108 1.38531208 2.77786589 -0.34310576] [ 2.91686511 -2.88944006 4.34043217 0.32656598]] [[ 1. 0. 0. 0.] [ 1. 0. 1. 0.] [ 0. 1. 1. 0.] [ 1. 0. 1. 1.] ... [ 1. 0. 0. 0.] [ 1. 0. 1. 0.] [ 0. 1. 1. 0.] [ 1. 0. 1. 1.]]
我认为此代码仍有许多需要改进的地方。任何建议都表示赞赏。
答案 1 :(得分:1)
您的准确度层毫无意义。
精确度图层的工作方式:在caffe精度图层中需要两个输入
(i)预测概率向量和
(ii)地面实况对应的标量整数标签
准确度层比检查预测标签的概率是否确实是最大值(或top_k
之内)
因此,如果您必须对C
个不同的类进行分类,那么您的输入将是N
- by - C
(其中N
是批量大小)输入{{{}的预测概率1}}属于每个N
类的样本和C
标签。
在您的网络中定义的方式:您输入准确性图层N
- 按4预测和N
- 按4标签 - 这没有任何意义为caffe。