我构建一个混合整数编程模型,我想定义一个决策变量的最小值和最小值。
例如,假设C = {19,20,30}我想将C_early定义为19,将C_late定义为30.然后我想最小化差异。使用辅助约束成功定义了C_late部分,但是,我认为我缺少了最小部分的内容。
这是我的代码:
int I=...;
int J=...;
int K=...;
int T=...;
range Order = 1..I;
range Job = 1..J;
range Machine=1..K;
range Position = 1..T;
int p[Order][Job]=...;
int a[Order][Job][Machine]=...;
dvar boolean x[Order][Job][Machine][Position];
dvar int C_late[Order];
dvar int C_early[Order];
dvar int diff[Order];
dvar int+ y [Machine][Position];
dvar int+ C[Order][Job];
dvar int Cmax;
minimize
Cmax;
subject to{
// Ensure that a job is scheduled on one position only
forall(i in Order, j in Job: p[i][j]>0) sum(t in Position, m in Machine)
x[i][j][m][t] == 1;
forall(m in Machine, t in Position) sum(i in Order, j in Job: p[i][j]>0)
x[i][j][m][t] <= 1;
forall(i in Order, j in Job: p[i][j]>0 , m in Machine, t in Position)
x[i][j][m][t] - a[i][j][m] <= 0;
forall (m in Machine)
y[m][1] >= sum(i in Order, j in Job) p[i][j]*x[i][j][m][1];
forall(m in Machine, t in Position: t>=2)
y[m][t] >= y[m][t-1] + sum(i in Order, j in Job) p[i][j]*x[i][j][m][t];
forall(i in Order, j in Job: p[i][j]>0, m in Machine, t in Position)
C[i][j] >= y[m][t] - 100000*(1 - x[i][j][m][t]);
forall(m in Machine)
sum(i in Order, j in Job, t in Position) p[i][j]*x[i][j][m][t] - Cmax <= 0;
forall(i in Order, j in Job: p[i][j]>0)
C[i][j] >= C_early[i];
forall(i in Order, j in Job: p[i][j]>0)
C[i][j] <= C_late[i];
forall (i in Order)
C_late[i] - C_early[i] <= diff[i]
}
最后三个限制与我的问题有关。
数据集示例:
J=3;
K=3;
T=10;
I=10;
p= [
[15,0,0],
[14,0,0],
[16,0,0],
[15,0,0],
[14,0,0],
[16,0,0],
[16,0,0],
[14,0,0],
[15,0,0],
[17,16,14]
];
a = [
[[1,1,1], [0,0,0], [0,0,0]],
[[0,1,1], [0,0,0], [0,0,0]],
[[1,1,1], [0,0,0], [0,0,0]],
[[1,0,1], [0,0,0], [0,0,0]],
[[0,1,1], [0,0,0], [0,0,0]],
[[1,1,1], [0,0,0], [0,0,0]],
[[0,1,1], [0,0,0], [0,0,0]],
[[0,1,1], [0,0,0], [0,0,0]],
[[1,1,1], [0,0,0], [0,0,0]],
[[1,1,1], [1,1,1], [1,0,1]],
];
我知道我必须使用big m方法进行最小约束,但是,我不知道如何 谢谢,
答案 0 :(得分:0)
你只能最小化Cmax,而不是差异。这可能是一个错误。