我已经训练了一个分类器,我通过泡菜加载。 我的主要疑问是,是否有任何东西可以加快分类任务。每个文本花费近1分钟(特征提取和分类),这是正常的吗?我应该继续进行多线程吗?
这里有一些代码片段可以看到整体流程:
for item in items:
review = ''.join(item['review_body'])
review_features = getReviewFeatures(review)
normalized_predicted_rating = getPredictedRating(review_features)
item_processed['rating'] = str(round(float(normalized_predicted_rating),1))
def getReviewFeatures(review, verbose=True):
text_tokens = tokenize(review)
polarity = getTextPolarity(review)
subjectivity = getTextSubjectivity(review)
taggs = getTaggs(text_tokens)
bigrams = processBigram(taggs)
freqBigram = countBigramFreq(bigrams)
sort_bi = sortMostCommun(freqBigram)
adjectives = getAdjectives(taggs)
freqAdjectives = countFreqAdjectives(adjectives)
sort_adjectives = sortMostCommun(freqAdjectives)
word_features_adj = list(sort_adjectives)
word_features = list(sort_bi)
features={}
for bigram,freq in word_features:
features['contains(%s)' % unicode(bigram).encode('utf-8')] = True
features["count({})".format(unicode(bigram).encode('utf-8'))] = freq
for word,freq in word_features_adj:
features['contains(%s)' % unicode(word).encode('utf-8')] = True
features["count({})".format(unicode(word).encode('utf-8'))] = freq
features["polarity"] = polarity
features["subjectivity"] = subjectivity
if verbose:
print "Get review features..."
return features
def getPredictedRating(review_features, verbose=True):
start_time = time.time()
classifier = pickle.load(open("LinearSVC5.pickle", "rb" ))
p_rating = classifier.classify(review_features) # in the form of "# star"
predicted_rating = re.findall(r'\d+', p_rating)[0]
predicted_rating = int(predicted_rating)
best_rating = 5
worst_rating = 1
normalized_predicted_rating = 0
normalized_predicted_rating = round(float(predicted_rating)*float(10.0)/((float(best_rating)-float(worst_rating))+float(worst_rating)))
if verbose:
print "Get predicted rating..."
print "ML_RATING: ", normalized_predicted_rating
print("---Took %s seconds to predict rating for the review---" % (time.time() - start_time))
return normalized_predicted_rating
答案 0 :(得分:1)
NLTK是一个很好的工具,也是自然语言处理的一个很好的起点,但如果速度很重要,它有时并不是很有用,正如作者暗示的那样:
NLTK被称为“使用Python进行计算语言学教学和工作的绝佳工具”,以及“使用自然语言进行游戏的神奇图书馆。”
因此,如果您的问题仅在于工具包分类器的速度,则必须使用其他资源,或者您必须自己编写分类器。
如果您想使用可能更快的分类器,Scikit可能对您有所帮助。
答案 1 :(得分:1)
您似乎使用dictionary
来构建要素向量。我强烈怀疑问题就在那里。
正确的方法是使用numpy ndarray
,并在列上显示行和要素的示例。所以,像
import numpy as np
# let's suppose 6 different features = 6-dimensional vector
feats = np.array((1, 6))
# column 0 contains polarity, column 1 subjectivity, and so on..
feats[:, 0] = polarity
feats[:, 1] = subjectivity
# ....
classifier.classify(feats)
当然,您必须使用相同的数据结构并在培训期间遵守相同的惯例。