我有一个长度为100万的单词矢量名为WORDS。我有一个名为SENTENCES的9百万对象列表。我列表中的每个对象都是一个由10-50长度的单词向量表示的句子。这是一个例子:
head(WORDS)
[1] "aba" "accra" "ada" "afrika" "afrikan" "afula" "aggamemon"
SENTENCES[[1]]
[1] "how" "to" "interpret" "that" "picture"
我想将列表中的每个句子转换为数字向量,其元素对应于WORDS大向量中句子单词的位置。 实际上,我知道如何使用该命令:
convert <- function(sentence){
return(which(WORDS %in% sentence))
}
SENTENCES_NUM <- lapply(SENTENCES, convert)
问题在于它需要太长时间。我的意思是我的RStudio爆炸了,虽然我有一台16Go RAM计算机。所以问题是你有什么想法来加速计算吗?
答案 0 :(得分:3)
fastmatch是R核心人员的一个小包,它会对查询进行哈希处理,以便初始搜索和后续搜索更快。
你真正在做的是制作一个具有每个句子共有的预定义级别的因子。他的C代码中的缓慢步骤是对因子级别进行排序,通过为因子函数的快速版本提供(唯一的)因子级别列表,可以避免这种情况。
如果你只想要整数位置,你可以很容易地从因子转换为整数:很多人不经意地这样做。
您实际上并不需要任何因素,只需要match
。你的代码也会生成一个逻辑向量,然后重新计算它的位置:match
直接进入这些位置。
library(fastmatch)
library(microbenchmark)
WORDS <- read.table("https://dotnetperls-controls.googlecode.com/files/enable1.txt", stringsAsFactors = FALSE)[[1]]
words_factor <- as.factor(WORDS)
# generate 100 sentences of between 5 and 15 words:
SENTENCES <- lapply(c(1:100), sample, x = WORDS, size = sample(c(5:15), size = 1))
bench_fun <- function(fun)
lapply(SENTENCES, fun)
# poster's slow solution:
hg_convert <- function(sentence)
return(which(WORDS %in% sentence))
jw_convert_match <- function(sentence)
match(sentence, WORDS)
jw_convert_match_factor <- function(sentence)
match(sentence, words_factor)
jw_convert_fastmatch <- function(sentence)
fmatch(sentence, WORDS)
jw_convert_fastmatch_factor <- function(sentence)
fmatch(sentence, words_factor)
message("starting benchmark one")
print(microbenchmark(bench_fun(hg_convert),
bench_fun(jw_convert_match),
bench_fun(jw_convert_match_factor),
bench_fun(jw_convert_fastmatch),
bench_fun(jw_convert_fastmatch_factor),
times = 10))
# now again with big samples
# generating the SENTENCES is quite slow...
SENTENCES <- lapply(c(1:1e6), sample, x = WORDS, size = sample(c(5:15), size = 1))
message("starting benchmark two, compare with factor vs vector of words")
print(microbenchmark(bench_fun(jw_convert_fastmatch),
bench_fun(jw_convert_fastmatch_factor),
times = 10))
我把它放在https://gist.github.com/jackwasey/59848d84728c0f55ef11
上结果格式不是很好,足以说,有或没有因子输入的fastmatch显着更快。
# starting benchmark one
Unit: microseconds
expr min lq mean median uq max neval
bench_fun(hg_convert) 665167.953 678451.008 704030.2427 691859.576 738071.699 777176.143 10
bench_fun(jw_convert_match) 878269.025 950580.480 962171.6683 956413.486 990592.691 1014922.639 10
bench_fun(jw_convert_match_factor) 1082116.859 1104331.677 1182310.1228 1184336.810 1198233.436 1436600.764 10
bench_fun(jw_convert_fastmatch) 203.031 220.134 462.1246 289.647 305.070 2196.906 10
bench_fun(jw_convert_fastmatch_factor) 251.474 300.729 1351.6974 317.439 362.127 10604.506 10
# starting benchmark two, compare with factor vs vector of words
Unit: seconds
expr min lq mean median uq max neval
bench_fun(jw_convert_fastmatch) 3.066001 3.134702 3.186347 3.177419 3.212144 3.351648 10
bench_fun(jw_convert_fastmatch_factor) 3.012734 3.149879 3.281194 3.250365 3.498593 3.563907 10
因此,我现在还不会遇到并行实现的麻烦。
答案 1 :(得分:-1)
不会更快,但它是处理事情的整洁方式。
library(dplyr)
library(tidyr)
sentence =
data_frame(word.name = SENTENCES,
sentence.ID = 1:length(SENTENCES) %>%
unnest(word.name)
word = data_frame(
word.name = WORDS,
word.ID = 1:length(WORDS)
sentence__word =
sentence %>%
left_join(word)