我运行了一个python脚本,它在多个线程中启动相同的功能。这些函数创建并处理2个计数器(c1和c2)。来自分叉进程的所有c1计数器的结果应该合并在一起。与所有c2计数器的结果相同,由不同的叉子返回。
我的(伪)代码看起来像这样:
def countIt(cfg)
c1 = Counter
c2 = Counter
#do some things and fill the counters by counting words in an text, like
#c1= Counter({'apple': 3, 'banana': 0})
#c2= Counter({'blue': 3, 'green': 0})
return c1, c2
if __name__ == '__main__':
cP1 = Counter()
cP2 = Counter()
cfg = "myConfig"
p = multiprocessing.Pool(4) #creating 4 forks
c1, c2 = p.map(countIt,cfg)[:2]
# 1.) This will only work with [:2] which seams to be no good idea
# 2.) at this point c1 and c2 are lists, not a counter anymore,
# so the following will not work:
cP1 + c1
cP2 + c2
按照上面的例子,我需要一个结果,如: cP1 =计数器({'apple':25,'banana':247,'orange':24}) cP2 =计数器({'red':11,'blue':56,'green':3})
所以我的问题是:为了聚合父进程中的每个计数器(所有c1和所有c2),我如何计算分解进程的东西?
答案 0 :(得分:2)
你需要"解压缩"通过使用例如for-each循环来获得结果。您将收到一个元组列表,其中每个元组是一对计数器:(c1, c2)
使用当前的解决方案,您实际上将它们混合起您已将[(c1a, c2a), (c1b, c2b)]
分配给c1, c2
,表示c1
包含(c1a, c2a)
且c2
包含(c1b, c2b)
。
试试这个:
if __name__ == '__main__':
from contextlib import closing
cP1 = Counter()
cP2 = Counter()
# I hope you have an actual list of configs here, otherwise map will
# will call `countIt` with the single characters of the string 'myConfig'
cfg = "myConfig"
# `contextlib.closing` makes sure the pool is closed after we're done.
# In python3, Pool is itself a contextmanager and you don't need to
# surround it with `closing` in order to be able to use it in the `with`
# construct.
# This approach, however, is compatible with both python2 and python3.
with closing(multiprocessing.Pool(4)) as p:
# Just counting, no need to order the results.
# This might actually be a bit faster.
for c1, c2 in p.imap_unordered(countIt, cfg):
cP1 += c1
cP2 += c2