我正在尝试实现一个函数来计算大小相同的两个数字之间的除法。我使用unsigned int
的数组来存储每个数字的值(参见下面的类结构)。我希望在两者的unsigned int
的数量之差不大于1的情况下实现有效的除法函数。我研究了长除法算法(如维基百科中所述),但是它太慢了。是否有任何有效的算法来处理这种特殊情况?目前,我正在处理最多100位的数字。
class BigInt {
public:
short sign; //sign of the number
unsigned int size; //number of unsigned int's needed to store the number
unsigned int* values; //values of the number
...
}
由于
答案 0 :(得分:1)
假设你想要一个整数结果,你应该能够相当快地完成它。
最简单的想法是以十进制的方式来考虑这一点,但开头的数字会略小一些。
让我们考虑一些较小的数字,例如:123456789/54321876。其中一个比另一个更多,所以最大可能的结果大约是10。
如果我们划分双方所以我们有(比方说)三个数字留在较大的数字和两个数字在较小的数字,我们得到123/54
,这产生相同的整数结果,就像我们做了全程精确地工作。
在你的情况下,你可以做几乎相同的事情,除了十进制数字,你将在你的较大项目中基本上保持三个单词的精度,在较小的项目中保持两个单词(实际上,即使是保守的 - 2和1个单词分别可能足够,但我现在懒得证明这一点,如果你这样做,你可能需要更加小心舍入。)
所以,是的,您认为这是一种特殊情况,您可以根据几乎相同大小的数字来保存工作是正确的。
答案 1 :(得分:1)
我相信Knuth算法D(计算机程序设计第2卷第4.3.1节)的修改版本应该在随机输入的恒定平均时间内完成这一技巧,线性时间最差 - 案件。显着的简化源于仅需要初始迭代产生的第一个商数字。
以下是我无耻地调整通用implementation from Hacker's Delight的尝试。该实现假设32位字和64位中间体/除法,但可以在更宽泛的算术可用的情况下自然扩展。
我确实担心这个功能实际上是未经测试的,所以请把它当作一个想法的细菌而不是一个完全成熟的实现。说实话,我甚至不记得为什么算法有效的细微之处。
// A helper function for finding the position of the most significant set bit.
// Please plug in your intrinsic of choice here
static unsigned int find_first_bit(uint32_t value) {
# ifdef _MSC_VER
unsigned long index;
(void) _BitScanReverse(&index, value);
return index + 1;
# else
unsigned int count = 0;
for(count = 0; value; ++count)
value >>= 1;
return count;
# endif
}
// Multi-word division in 32-bit big-endian segments, returning the most significant
// word of the quotient.
uint32_t divide(const uint32_t *num, const uint32_t *den, size_t len) {
// Skip past leading zero denominator digits. The quotient must fit in a single
// 32-bit word and so only the preceeding numerator digit needs be examined
uint32_t norm_den;
uint64_t norm_num = 0;
size_t top = 0;
while(norm_den = den[top], !norm_den)
norm_num = num[top++];
// Please pad the input to insure at least three denominator words counting from
// the first non-zero digit
assert(len >= top + 3);
// Divide the first two digits of the numerator by the leading digit of the
// denominator as an initial quotient digit guess, yielding an upper bound
// for the quotient at most two steps above the true value.
// Simultaneously normalize the denominator with the MSB in the 31st bit.
unsigned int norm = find_first_bit(norm_den);
norm_num = norm_num << (64 - norm);
norm_num |= ((uint64_t) num[top + 0] << 32 | num[top + 1]) >> norm;
norm_den = ((uint64_t) norm_den << 32 | den[top + 1]) >> norm;
// We are using a straight 64/64 division where 64/32=32 would suffice. The latter
// is available on e.g. x86-32 but difficult to generate short of assembly code.
uint32_t quot = (uint32_t) (norm_num / norm_den);
// Substitute norm_num - quot * norm_den if your optimizer is too thick-headed to
// efficiently extract the remainder
uint32_t rem = norm_num % norm_den;
// Test the next word of the input, reducing the upper bound to within one step
// of the true quotient. See Knuth for proofs of this reduction and the bounds
// of the first guess
norm_num = ((uint64_t) num[top + 1] << 32 | num[top + 2]) >> norm;
norm_num = (uint64_t) rem << 32 | (uint32_t) norm_num;
norm_den = ((uint64_t) den[top + 1] << 32 | den[top + 2]) >> norm;
if((uint64_t) quot * norm_den > norm_num) {
--quot;
// There is no "add-back" step try to avoid and so there is little point
// in looping to refine the guess further since the bound is sufficiently
// tight already
}
// Compare quotient guess multiplied by the denominator to the numerator
// across whole numbers to account for the final quotient step.
// There is no need to bother with normalization here. Furthermore we can
// compare from the most to the least significant and cut off early when the
// intermediate result becomes large, yielding a constant average running
// time for random input
uint64_t accum = 0;
do {
uint64_t prod = (uint64_t) quot * *den++;
accum = accum << 32 | *num++;
// A negative partial result can never recover, so pick the lower
// quotient. A separate test is required to avoid 65-bit arithmetic
if(accum < prod)
return --quot;
accum -= prod;
// Similarly a partial result which spills into the upper 32-bits can't
// recover either, so go with the upper quotient
if((uint64_t) accum >= 0x100000000)
return quot;
} while(--len);
return quot;
}