找到2个向量之间的向量(2D)

时间:2010-07-17 00:04:27

标签: c++ c algorithm graphics vector

让我们举例说,我有以下2个向量:

       *B





*A

我想要的矢量是C

*C       *B





*A

我要做的是生成方形轮廓。我使用2d slurp:其中v0将是A而v2将是B.现在我使用sslerp2D来制作圆边但我也想要常规方形边缘因此我想要修改它。

POINTFLOAT slerp2d( const POINTFLOAT &v0, 
                   const POINTFLOAT &v1, float t )
{
    float dot = (v0.x * v1.x + v0.y * v1.y);

    if( dot < -1.0f ) dot = -1.0f;
    if( dot > 1.0f ) dot = 1.0f;

    float theta_0 = acos( dot );
    float theta = theta_0 * t;

    POINTFLOAT v2;
    v2.x = -v0.y;
    v2.y = v0.x;

    POINTFLOAT result;
    result.x = v0.x * cos(theta) + v2.x * sin(theta);
    result.y = v0.y * cos(theta) + v2.y * sin(theta);

    return result;
}

由于

编辑:

我生成这样的轮廓:

void OGLSHAPE::GenerateLinePoly(std::vector<DOUBLEPOINT> &input, int width)
{
    OutlineVec.clear();
    if(input.size() < 2)
    {
        return;
    }


    if(connected)
    {
        input.push_back(input[0]);
        input.push_back(input[1]);
    }


    float w = width / 2.0f;

    //glBegin(GL_TRIANGLES);
    for( size_t i = 0; i < input.size()-1; ++i )
    {
        POINTFLOAT cur;
        cur.x = input[i].point[0];
        cur.y = input[i].point[1];


        POINTFLOAT nxt;


        nxt.x = input[i+1].point[0];
        nxt.y = input[i+1].point[1];

        POINTFLOAT b;
        b.x = nxt.x - cur.x;
        b.y = nxt.y - cur.y;

        b = normalize(b);



        POINTFLOAT b_perp;
        b_perp.x = -b.y;
        b_perp.y = b.x;


        POINTFLOAT p0;
        POINTFLOAT p1;
        POINTFLOAT p2;
        POINTFLOAT p3;

        p0.x = cur.x + b_perp.x * w;
        p0.y = cur.y + b_perp.y * w;

        p1.x = cur.x - b_perp.x * w;
        p1.y = cur.y - b_perp.y * w;

        p2.x = nxt.x + b_perp.x * w;
        p2.y = nxt.y + b_perp.y * w;

        p3.x = nxt.x - b_perp.x * w;
        p3.y = nxt.y - b_perp.y * w;

        OutlineVec.push_back(p0.x);
        OutlineVec.push_back(p0.y);
        OutlineVec.push_back(p1.x);
        OutlineVec.push_back(p1.y);
        OutlineVec.push_back(p2.x);
        OutlineVec.push_back(p2.y);

        OutlineVec.push_back(p2.x);
        OutlineVec.push_back(p2.y);
        OutlineVec.push_back(p1.x);
        OutlineVec.push_back(p1.y);
        OutlineVec.push_back(p3.x);
        OutlineVec.push_back(p3.y);



        // only do joins when we have a prv
        if( i == 0 ) continue;


        POINTFLOAT prv;
        prv.x = input[i-1].point[0];
        prv.y = input[i-1].point[1];

        POINTFLOAT a;
        a.x = prv.x - cur.x;
        a.y = prv.y - cur.y;

        a = normalize(a);

        POINTFLOAT a_perp;
        a_perp.x = a.y;
        a_perp.y = -a.x;

        float det = a.x * b.y  - b.x * a.y;
        if( det > 0 )
        {
            a_perp.x = -a_perp.x;
            a_perp.y = -a_perp.y;

            b_perp.x = -b_perp.x;
            b_perp.y = -b_perp.y;
        }

        // TODO: do inner miter calculation

        // flip around normals and calculate round join points
        a_perp.x = -a_perp.x;
        a_perp.y = -a_perp.y;

        b_perp.x = -b_perp.x;
        b_perp.y = -b_perp.y;

        size_t num_pts = 4;

        std::vector< POINTFLOAT> round( 1 + num_pts + 1 );
        POINTFLOAT nc;
        nc.x = cur.x + (a_perp.x * w);
        nc.y = cur.y + (a_perp.y * w);

        round.front() = nc;

        nc.x = cur.x + (b_perp.x * w);
        nc.y = cur.y + (b_perp.y * w);

        round.back() = nc;

        for( size_t j = 1; j < num_pts+1; ++j )
        {
            float t = (float)j/(float)(num_pts+1);
            if( det > 0 )
         {
             POINTFLOAT nin;
             nin = slerp2d( b_perp, a_perp, 1.0f-t );
             nin.x *= w;
             nin.y *= w;

             nin.x += cur.x;
             nin.y += cur.y;

             round[j] = nin;
         }
            else
         {
             POINTFLOAT nin;
             nin = slerp2d( a_perp, b_perp, t );
             nin.x *= w;
             nin.y *= w;

             nin.x += cur.x;
             nin.y += cur.y;

             round[j] = nin;
         }
        }

        for( size_t j = 0; j < round.size()-1; ++j )
        {

            OutlineVec.push_back(cur.x);
            OutlineVec.push_back(cur.y);


            if( det > 0 )
         {
             OutlineVec.push_back(round[j + 1].x);
             OutlineVec.push_back(round[j + 1].y);
             OutlineVec.push_back(round[j].x);
             OutlineVec.push_back(round[j].y);
         }
            else
         {

             OutlineVec.push_back(round[j].x);
             OutlineVec.push_back(round[j].y);

             OutlineVec.push_back(round[j + 1].x);
             OutlineVec.push_back(round[j + 1].y);
         }
        }
    }

}

1 个答案:

答案 0 :(得分:3)

你似乎在使用积分,而不是矢量。如果你有两个点(X 1 ,Y 1 ),(X 2 ,Y 2 ),那么(X 1 ,Y 2 )和(X 2 ,Y 1 )都应该形成直角三角形前两点[编辑:提供,当然,前两个点不形成垂直或水平线]。对于您提供的输入,一个是您标记为C的点,另一个将在右下角给出镜像三角形。

进一步编辑:我不太清楚你对一个不完全是90度的角度的意思。对于原始线是垂直或水平的上述情况,从这些中的一个形成无限多种直角三角形是微不足道的:为第二侧选择任意长度并从两点之一以90度延伸。你的第三面(斜边)将从新点延伸到两个原点的其他。如果你愿意的话,你也可以构造一个无限多种其他直角三角形,原始对形成斜边(尽管它涉及更加困难的数学 - A 2 = C 2 -B 2 ,其中C是原始线的长度,B是您在0..C范围内选择的任意长度。