我有数据帧格式的数据,我将使用用户构建的函数进行线性回归计算。这是代码:
from sklearn.datasets import load_boston
boston = load_boston()
bos = pd.DataFrame(boston.data) # convert to DF
bos.columns = boston.feature_names
bos['PRICE'] = boston.target
y = bos.PRICE
x = bos.drop('PRICE', axis = 1) # DROP PRICE since only want X-type variables (not Y-target)
xw = df.to_array(x)
xw = np.insert(xw,0,1, axis = 1) # to insert a column of "1" values
但是,我收到错误:
AttributeError Traceback (most recent call last)
<ipython-input-131-272f1b4d26ba> in <module>()
1 import copy
2
----> 3 xw = df.to_array(x)
AttributeError: 'int' object has no attribute 'to_array'
我不确定问题出在哪里。我需要将一个值数组(在本例中为x)传递给函数以执行一些矩阵运算
插入功能正在逐步进行代码开发,但出于某种原因在这里失败了。
我试过了:
xw = copy.deepcopy(x)
没有成功
有什么想法吗?
答案 0 :(得分:0)
x.as_matrix()
而非df.to_array(x)
有关as_matrix()
以下是可行的代码
from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
boston = load_boston()
bos = pd.DataFrame(boston.data) # convert to DF
bos.columns = boston.feature_names
bos['PRICE'] = boston.target
y = bos.PRICE
x = bos.drop('PRICE', axis = 1) # DROP PRICE since only want X-type variables (not Y-target)
xw = x.as_matrix()
xw = np.insert(xw,0,1, axis = 1) # to insert a column of "1" values