我的DataFrame有一栏:
import pandas as pd
list=[1,1,4,5,6,6,30,20,80,90]
df=pd.DataFrame({'col1':list})
如何添加一列' col2'这将包含参考col1的分类信息:
if col1 > 0 and col1 <= 10 then col2 = 'xxx'
if col1 > 10 and col1 <= 50 then col2 = 'yyy'
if col1 > 50 then col2 = 'zzz'
答案 0 :(得分:5)
您可以先创建新列col2
,然后根据条件更新其值:
df['col2'] = 'zzz'
df.loc[(df['col1'] > 0) & (df['col1'] <= 10), 'loc2'] = 'xxx'
df.loc[(df['col1'] > 10) & (df['col1'] <= 50), 'loc2'] = 'yyy'
print df
输出:
col1 col2
0 1 xxx
1 1 xxx
2 4 xxx
3 5 xxx
4 6 xxx
5 6 xxx
6 30 yyy
7 20 yyy
8 80 zzz
9 90 zzz
或者,您也可以根据列col1
:
def func(x):
if 0 < x <= 10:
return 'xxx'
elif 10 < x <= 50:
return 'yyy'
return 'zzz'
df['col2'] = df['col1'].apply(func)
,这将产生相同的输出。
在这种情况下,apply
方法应该更受欢迎,因为它更快:
%timeit run() # packaged to run the first approach
# 100 loops, best of 3: 3.28 ms per loop
%timeit df['col2'] = df['col1'].apply(func)
# 10000 loops, best of 3: 187 µs per loop
但是,当DataFrame的大小很大时,内置的矢量化操作(即使用屏蔽方法)可能会更快。
答案 1 :(得分:5)
您可以按如下方式使用{{3}}:
df['col2'] = pd.cut(df['col1'], bins=[0, 10, 50, float('Inf')], labels=['xxx', 'yyy', 'zzz'])
输出:
col1 col2
0 1 xxx
1 1 xxx
2 4 xxx
3 5 xxx
4 6 xxx
5 6 xxx
6 30 yyy
7 20 yyy
8 80 zzz
9 90 zzz
答案 2 :(得分:2)
2种方法,使用几个loc
调用来屏蔽符合条件的行:
In [309]:
df.loc[(df['col1'] > 0) & (df['col1']<= 10), 'col2'] = 'xxx'
df.loc[(df['col1'] > 10) & (df['col1']<= 50), 'col2'] = 'yyy'
df.loc[df['col1'] > 50, 'col2'] = 'zzz'
df
Out[309]:
col1 col2
0 1 xxx
1 1 xxx
2 4 xxx
3 5 xxx
4 6 xxx
5 6 xxx
6 30 yyy
7 20 yyy
8 80 zzz
9 90 zzz
或使用嵌套np.where
:
In [310]:
df['col2'] = np.where((df['col1'] > 0) & (df['col1']<= 10), 'xxx', np.where((df['col1'] > 10) & (df['col1']<= 50), 'yyy', 'zzz'))
df
Out[310]:
col1 col2
0 1 xxx
1 1 xxx
2 4 xxx
3 5 xxx
4 6 xxx
5 6 xxx
6 30 yyy
7 20 yyy
8 80 zzz
9 90 zzz