我试图用类似csv的值来绘制日期。
Tue 2 Jun 16:55:51 CEST 2015,3
Wed 3 Jun 14:51:49 CEST 2015,3
Fri 5 Jun 10:31:59 CEST 2015,3
Sat 6 Jun 20:47:31 CEST 2015,3
Sun 7 Jun 13:58:23 CEST 2015,3
Mon 8 Jun 14:56:49 CEST 2015,2
Tue 9 Jun 23:39:11 CEST 2015,1
Sat 13 Jun 16:55:26 CEST 2015,2
Sun 14 Jun 15:52:34 CEST 2015,3
Sun 14 Jun 16:17:24 CEST 2015,3
Mon 15 Jun 13:23:18 CEST 2015,1
...
我做的事与第一个答案非常相似:Matplotlib timelines
但是很难掌握看到这种可视化的数据。然后我意识到我试图绘制时期并且我不需要一个重要的y轴,只有x轴的日期和值可以是颜色
这样的事情:
---===-===---****
DDDDDDDDDDDDDDDDD
-=* = type of values (using colors for example, but any representation would do)
D = dates
我似乎没有看到任何类似的matplotlib示例
colorbars看起来似乎可以工作,但并不完全,因为轴需要是日期间隔 http://matplotlib.org/examples/api/colorbar_only.html
答案 0 :(得分:13)
结果如下:
这是代码:
#!/usr/bin/env python3
from datetime import datetime, timedelta
from dateutil.relativedelta import relativedelta
import csv
import matplotlib.pyplot as plt
import matplotlib.dates as pltdate
from PIL import Image, ImageDraw
lines = []
with open('date') as f:
lines = list(csv.reader(f))
frmt = '%a %d %b %X %Z %Y'
dates = [datetime.strptime(line[0], frmt) for line in lines]
data = [line[1] for line in lines]
#datesnum = pltdate.date2num(dates)
#fig, ax = plt.subplots()
#ax.plot_date(datesnum, data, 'o')
#plt.show()
#generate image
WIDTH, HEIGHT = 4000, 400
BORDER = 70
W = WIDTH - (2 * BORDER)
H = HEIGHT - (2 * BORDER)
colors = { '0': "lime", '1' : (255,200,200), '2' : (255,100,100), '3' : (255,0,0) }
image = Image.new("RGB", (WIDTH, HEIGHT), "white")
min_date = dates[0]
max_date = datetime.now()
#print(min_date)
#print(max_date)
interval = max_date - min_date
#print(interval.days)
#draw frame
draw = ImageDraw.Draw(image)
draw.rectangle((BORDER, BORDER, WIDTH-BORDER, HEIGHT-BORDER), fill=(128,128,128), outline=(0,0,0))
#draw circles
circle_w = 10
range_secs = W / interval.total_seconds()
#print(range_secs)
for i in range(len(dates)):
wat = dates[i] - min_date
offset_sec = (dates[i] - min_date).total_seconds()
offset = range_secs * offset_sec
x = BORDER + offset
draw.ellipse((x, BORDER + 50, x + circle_w, BORDER + 50 + circle_w), outline=colors[data[i]])
#draw.text((x, BORDER + 75), str(i), fill=colors[data[i]])
#draw rectangles
range_days = W / (interval.days + 1)
#print("range_days",range_days)
current_date = min_date
date_month = min_date + relativedelta(months=1)
current_index = 0
for i in range(interval.days + 1):
max_color = '0'
while dates[current_index].date() == current_date.date():
if int(data[current_index]) > int(max_color):
max_color = data[current_index]
current_index += 1
if current_index > len(dates) - 1:
current_index = 0
x = BORDER + range_days * i
draw.rectangle((x, BORDER + 100, x+range_days, BORDER + 100 + 50), fill=colors[max_color], outline=(0,0,0))
if current_date == date_month:
draw.line((x, BORDER + 100 +50, x, H + BORDER + 20), fill="black")
draw.text((x, H + BORDER + 20), str(date_month.date()), fill="black")
date_month = date_month + relativedelta(months=1)
#draw.text((x, BORDER + 175), str(i), fill=colors[max_color])
current_date = current_date + timedelta(days=1)
#draw start and end dates
draw.text((BORDER, H + BORDER + 20), str(min_date.date()), fill="black")
draw.text((BORDER + W, H + BORDER + 20), str(max_date.date()), fill="black")
image.save("date.png")
答案 1 :(得分:12)
,例如,它是定性数据,因此您不想使用空间y轴?
来自:
import matplotlib.pyplot as plt
import pandas as pd
dates = ["Tue 2 Jun 16:55:51 CEST 2015",
"Wed 3 Jun 14:51:49 CEST 2015",
"Fri 5 Jun 10:31:59 CEST 2015",
"Sat 6 Jun 20:47:31 CEST 2015",
"Sun 7 Jun 13:58:23 CEST 2015",
"Mon 8 Jun 14:56:49 CEST 2015",
"Tue 9 Jun 23:39:11 CEST 2015",
"Sat 13 Jun 16:55:26 CEST 2015",
"Sun 14 Jun 15:52:34 CEST 2015",
"Sun 14 Jun 16:17:24 CEST 2015",
"Mon 15 Jun 13:23:18 CEST 2015"]
values = [3,3,3,3,3,2,1,2,3,3,1]
X = pd.to_datetime(dates)
fig, ax = plt.subplots(figsize=(6,1))
ax.scatter(X, [1]*len(X), c=values,
marker='s', s=100)
fig.autofmt_xdate()
# everything after this is turning off stuff that's plotted by default
ax.yaxis.set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.xaxis.set_ticks_position('bottom')
ax.get_yaxis().set_ticklabels([])
day = pd.to_timedelta("1", unit='D')
plt.xlim(X[0] - day, X[-1] + day)
plt.show()
答案 2 :(得分:0)
我使用broken_barh()
API,例如:
mycolors=deque(["#d24e32","#6a40c5","#59ba45",...])
# for each bar to draw
ax.broken_barh([(x, w), ...], (y, h), color=mycolors, alpha=0.3, antialiased=True)
mycolors.rotate(-1)
答案 3 :(得分:0)
我找不到想要的答案,所以这就是我的看法。此函数将采用一个时间序列,然后在该范围内绘制一个随机的正负点。通过给它一个系列,您将在图形上留一个标签,而第二个系列将使您单击它以获取更多数据。
for j in range(0,len(Filters)):
if j == 1:
Shifts(1) = np.int16(-(np.round(np.log2(np.sqrt(len(Filters[j][3])*2/16)))))
Shifts(1) = Shifts(1) - np.int16(4)
elif j < len(Filters):
Shifts(j) = np.int16(-(np.round(np.log2(np.sqrt(len(Filters[j][3])*2/16)))))