使用matplotlib的2D插值谱图中差异的来源是什么?

时间:2015-09-14 12:52:31

标签: python matplotlib scipy interpolation

我正在尝试使用scipy的inetrp2d函数插入从matplotlib获得的谱图,但不知何故无法得到相同的谱图。数据可用here

实际的频谱图是:

enter image description here

内插频谱图是:

enter image description here

代码看起来没问题,但即使这样,也有问题。使用的代码是:

from __future__ import division
from matplotlib import ticker as mtick
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import numpy as np
from bisect import bisect
from scipy import interpolate
from matplotlib.ticker import MaxNLocator
data = np.genfromtxt('spectrogram.dat', skiprows = 2, delimiter = ',')
pressure = data[:, 1] * 0.065
time = data[:, 0]
cax = plt.specgram(pressure * 100000, NFFT = 256, Fs = 50000, noverlap=4, cmap=plt.cm.gist_heat, zorder = 1)

f = interpolate.interp2d(cax[2], cax[1], cax[0], kind='cubic')
xnew = np.linspace(cax[2][0], cax[2][-1], 100)
ynew = np.linspace(cax[1][0], cax[1][-1], 100)
znew = 10 * np.log10(f(xnew, ynew))

fig = plt.figure(figsize=(6, 3.2))
ax = fig.add_subplot(111)
ax.set_title('colorMap')
plt.pcolormesh(xnew, ynew, znew, cmap=plt.cm.gist_heat)
# plt.colorbar()
plt.title('Interpolated spectrogram')
plt.colorbar(orientation='vertical')
plt.savefig('interp_spectrogram.pdf')

如何使用Python正确插值谱图?

1 个答案:

答案 0 :(得分:1)

您的解决方案的关键在于此警告,您可能已经或可能没有看到过:

RuntimeWarning: invalid value encountered in log10
    znew = 10 * np.log10(f(xnew, ynew))

如果您的数据实际上是一个权力,其日志您想要明确地以分贝的形式查看,请在适合样条曲线之前先记录日志:

spectrum, freqs, t, im = cax
dB = 10*np.log10(spectrum)
#f = interpolate.interp2d(t, freqs, dB, kind='cubic') # docs for this recommend next line
f = interpolate.RectBivariateSpline(t, freqs,  dB.T) # but this uses xy not ij, hence the .T

xnew = np.linspace(t[0], t[-1], 10*len(t))
ynew = np.linspace(freqs[0], freqs[-1], 10*len(freqs)) # was it wider spaced than freqs on purpose?
znew = f(xnew, ynew).T

然后按照你的情节进行策划:

decibels

上一个回答:

如果您只想plot on logscale,请使用matplotlib.colors.LogNorm

znew = f(xnew, ynew) # Don't take the log here

plt.figure(figsize=(6, 3.2))
plt.pcolormesh(xnew, ynew, znew, cmap=plt.cm.gist_heat, norm=colors.LogNorm())

看起来像这样:

interpolated spectrogram

当然,在对数刻度上绘制时,其值仍为负值。当值为负数时,您的数据对您意味着什么应该决定您如何填写此数据。一个简单的解决方案是将这些值设置为最小的正值,并将它们填充为黑色:

filled