我写了一个程序来计算Zeta function到Abel-Plana formula的值。
根据引用的错误术语的值,Java在线程" main"中返回异常的错误消息。 java.lang.StackOverflowError的。
这是包含测试值的程序的工作副本。 Complex.Java程序是一个帮助程序。
/**************************************************************************
**
** Abel-Plana Formula for the Zeta Function
**
**************************************************************************
** Axion004
** 08/16/2015
**
** This program computes the value for Zeta(z) using a definite integral
** approximation through the Abel-Plana formula. The Abel-Plana formula
** can be shown to approximate the value for Zeta(s) through a definite
** integral. The integral approximation is handled through the Composite
** Simpson's Rule known as Adaptive Quadrature.
**************************************************************************/
import java.util.*;
import java.math.*;
public class AbelMain extends Complex {
public static void main(String[] args) {
AbelMain();
}
// Main method
public static void AbelMain() {
double re = 0, im = 0;
double start, stop, totalTime;
Scanner scan = new Scanner(System.in);
System.out.println("Calculation of the Riemann Zeta " +
"Function in the form Zeta(s) = a + ib.");
System.out.println();
System.out.print("Enter the value of [a] inside the Riemann Zeta " +
"Function: ");
try {
re = scan.nextDouble();
}
catch (Exception e) {
System.out.println("Please enter a valid number for a.");
}
System.out.print("Enter the value of [b] inside the Riemann Zeta " +
"Function: ");
try {
im = scan.nextDouble();
}
catch (Exception e) {
System.out.println("Please enter a valid number for b.");
}
start = System.currentTimeMillis();
Complex z = new Complex(re, im);
System.out.println("The value for Zeta(s) is " + AbelPlana(z));
stop = System.currentTimeMillis();
totalTime = (double) (stop-start) / 1000.0;
System.out.println("Total time taken is " + totalTime + " seconds.");
}
/**
* The definite integral for Zeta(z) in the Abel-Plana formula.
* <br> Numerator = Sin(z * arctan(t))
* <br> Denominator = (1 + t^2)^(z/2) * (e^(pi*t) + 1)
* @param t - the value of t passed into the integrand.
* @param z - The complex value of z = a + i*b
* @return the value of the complex function.
*/
public static Complex f(double t, Complex z) {
Complex num = (z.multiply(Math.atan(t))).sin();
Complex D1 = new Complex(1 + t*t, 0).pow(z.divide(2.0));
double D2 = Math.pow(Math.E, Math.PI * t) + 1.0;
Complex den = D1.multiply(D2);
return num.divide(den);
}
/**
* Adaptive quadrature - See http://www.mathworks.com/moler/quad.pdf
* @param a - the lower bound of integration.
* @param b - the upper bound of integration.
* @param z - The complex value of z = a + i*b
* @return the approximate numerical value of the integral.
*/
public static Complex adaptiveQuad(double a, double b, Complex z) {
BigDecimal EPSILON = new BigDecimal(1E-20);
double step = b - a;
double c = (a + b) / 2.0;
double d = (a + c) / 2.0;
double e = (b + c) / 2.0;
Complex S1 = (f(a, z).add(f(c, z).multiply(4)).add(f(b, z))).
multiply(step / 6.0);
Complex S2 = (f(a, z).add(f(d, z).multiply(4)).add(f(c, z).multiply(2))
.add(f(e, z).multiply(4)).add(f(b, z))).multiply(step / 12.0);
Complex result = (S2.minus(S1)).divide(15.0);
if(BigDecimal.valueOf(S2.minus(S1).mod()).compareTo(EPSILON) == -1
|| BigDecimal.valueOf(S2.minus(S1).mod()).compareTo(EPSILON)
== 0)
return S2.add(result);
else
return adaptiveQuad(a, c, z).add(adaptiveQuad(c, b, z));
}
/**
* The definite integral for Zeta(z) in the Abel-Plana formula.
* <br> C1 = 2^(z-1) / (z-1)
* <br> C2 = 2^(z)
* @param z - The complex value of z = a + i*b
* @return the value of Zeta(z) through C1, C2, and the
* quadrature approximation.
*/
public static Complex AbelPlana(Complex z) {
Complex two = new Complex(2.0, 0.0);
Complex C1 = two.pow(z.minus(1.0)).divide(z.minus(1.0));
Complex C2 = two.pow(z);
Complex mult = C2.multiply(adaptiveQuad(0, 10, z));
if ( z.re < 0 && z.re % 2 == 0 && z.im == 0)
return new Complex(0.0, 0.0);
else
return C1.minus(mult);
}
// Needed to reference the super class
public AbelMain(double re, double im) {
super(re, im);
}
}
BigDecimal EPSILON = new BigDecimal(1E-20);
变量正常工作并返回值。
Calculation of the Riemann Zeta Function in the form Zeta(s) = a + ib.
Enter the value of [a] inside the Riemann Zeta Function: 54
Enter the value of [b] inside the Riemann Zeta Function: 2
The value for Zeta(s) is 3.742894786684807E13 + 1.6565035537902216E14*i
Total time taken is 0.01 seconds.
帮助程序
/**************************************************************************
**
** Complex Numbers
**
**************************************************************************
** Axion004
** 08/20/2015
**
** This class is necessary as a helper class for the calculation of
** imaginary numbers. The calculation of Zeta(z) inside AbelMain is in
** the form of z = a + i*b.
**************************************************************************/
public class Complex extends Object{
public double re;
public double im;
/**
Constructor for the complex number z = a + i*b
@param re Real part
@param im Imaginary part
*/
public Complex (double re, double im) {
this.re = re;
this.im = im;
}
/**
Real part of the Complex number
@return Re[z] where z = a + i*b.
*/
public double real() {
return re;
}
/**
Imaginary part of the Complex number
@return Im[z] where z = a + i*b.
*/
public double imag() {
return im;
}
/**
Complex conjugate of the Complex number
in which the conjugate of z is z-bar.
@return z-bar where z = a + i*b and z-bar = a - i*b
*/
public Complex conjugate() {
return new Complex(re, -im);
}
/**
Addition of two Complex numbers (z is unchanged).
<br>(a+i*b) + (c+i*d) = (a+c) + i*(b+d)
@param t is the number to add.
@return z+t where z = a+i*b and t = c+i*d
*/
public Complex add(Complex t) {
return new Complex(re + t.real(), im + t.imag());
}
/**
Addition of Complex number and a double.
@param d is the number to add.
@return z+d where z = a+i*b and d = double
*/
public Complex add(double d){
return new Complex(this.re + d, this.im);
}
/**
Subtraction of two Complex numbers (z is unchanged).
<br>(a+i*b) - (c+i*d) = (a-c) + i*(b-d)
@param t is the number to subtract.
@return z-t where z = a+i*b and t = c+i*d
*/
public Complex minus(Complex t) {
return new Complex(re - t.real(), im - t.imag());
}
/**
Subtraction of Complex number and a double.
@param d is the number to subtract.
@return z-d where z = a+i*b and d = double
*/
public Complex minus(double d){
return new Complex(this.re - d, this.im);
}
/**
Complex multiplication (z is unchanged).
<br> (a+i*b) * (c+i*d) = (a*c)+ i(b*c) + i(a*d) - (b*d)
@param t is the number to multiply by.
@return z*t where z = a+i*b and t = c+i*d
*/
public Complex multiply(Complex t) {
return new Complex(re * t.real() - im * t.imag(), re *
t.imag() + im * t.real());
}
/**
Complex multiplication by a double.
@param d is the double to multiply by.
@return z*d where z = a+i*b and d = double
*/
public Complex multiply(double d){
return new Complex(this.re * d,this.im * d);}
/**
Modulus of a Complex number or the distance from the origin in
* the polar coordinate plane.
@return |z| where z = a + i*b.
*/
public double mod() {
if ( re != 0.0 || im != 0.0)
return Math.sqrt(re*re + im*im);
else
return 0.0;
}
/**
* Modulus of a Complex number squared
* @param z = a + i*b
* @return |z|^2 where z = a + i*b
*/
public double abs(Complex z) {
return Math.sqrt(Math.pow(re*re, 2) + Math.pow(im*im, 2));
}
/**
Division of Complex numbers (doesn't change this Complex number).
<br>(a+i*b) / (c+i*d) = (a+i*b)*(c-i*d) / (c+i*d)*(c-i*d) =
* (a*c+b*d) + i*(b*c-a*d) / (c^2-d^2)
@param t is the number to divide by
@return new Complex number z/t where z = a+i*b
*/
public Complex divide (Complex t) {
double denom = Math.pow(t.mod(), 2); // Square the modulus
return new Complex((re * t.real() + im * t.imag()) / denom,
(im * t.real() - re * t.imag()) / denom);
}
/**
Division of Complex number by a double.
@param d is the double to divide
@return new Complex number z/d where z = a+i*b
*/
public Complex divide(double d){
return new Complex(this.re / d, this.im / d);
}
/**
Exponential of a complex number (z is unchanged).
<br> e^(a+i*b) = e^a * e^(i*b) = e^a * (cos(b) + i*sin(b))
@return exp(z) where z = a+i*b
*/
public Complex exp () {
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) *
Math.sin(im));
}
/**
The Argument of a Complex number or the angle in radians
with respect to polar coordinates.
<br> Tan(theta) = b / a, theta = Arctan(b / a)
<br> a is the real part on the horizontal axis
<br> b is the imaginary part of the vertical axis
@return arg(z) where z = a+i*b.
*/
public double arg() {
return Math.atan2(im, re);
}
/**
The log or principal branch of a Complex number (z is unchanged).
<br> Log(a+i*b) = ln|a+i*b| + i*Arg(z) = ln(sqrt(a^2+b^2))
* + i*Arg(z) = ln (mod(z)) + i*Arctan(b/a)
@return log(z) where z = a+i*b
*/
public Complex log() {
return new Complex(Math.log(this.mod()), this.arg());
}
/**
The square root of a Complex number (z is unchanged).
Returns the principal branch of the square root.
<br> z = e^(i*theta) = r*cos(theta) + i*r*sin(theta)
<br> r = sqrt(a^2+b^2)
<br> cos(theta) = a / r, sin(theta) = b / r
<br> By De Moivre's Theorem, sqrt(z) = sqrt(a+i*b) =
* e^(i*theta / 2) = r(cos(theta/2) + i*sin(theta/2))
@return sqrt(z) where z = a+i*b
*/
public Complex sqrt() {
double r = this.mod();
double halfTheta = this.arg() / 2;
return new Complex(Math.sqrt(r) * Math.cos(halfTheta), Math.sqrt(r) *
Math.sin(halfTheta));
}
/**
The real cosh function for Complex numbers.
<br> cosh(theta) = (e^(theta) + e^(-theta)) / 2
@return cosh(theta)
*/
private double cosh(double theta) {
return (Math.exp(theta) + Math.exp(-theta)) / 2;
}
/**
The real sinh function for Complex numbers.
<br> sinh(theta) = (e^(theta) - e^(-theta)) / 2
@return sinh(theta)
*/
private double sinh(double theta) {
return (Math.exp(theta) - Math.exp(-theta)) / 2;
}
/**
The sin function for the Complex number (z is unchanged).
<br> sin(a+i*b) = cosh(b)*sin(a) + i*(sinh(b)*cos(a))
@return sin(z) where z = a+i*b
*/
public Complex sin() {
return new Complex(cosh(im) * Math.sin(re), sinh(im)*
Math.cos(re));
}
/**
The cos function for the Complex number (z is unchanged).
<br> cos(a +i*b) = cosh(b)*cos(a) + i*(-sinh(b)*sin(a))
@return cos(z) where z = a+i*b
*/
public Complex cos() {
return new Complex(cosh(im) * Math.cos(re), -sinh(im) *
Math.sin(re));
}
/**
The hyperbolic sin of the Complex number (z is unchanged).
<br> sinh(a+i*b) = sinh(a)*cos(b) + i*(cosh(a)*sin(b))
@return sinh(z) where z = a+i*b
*/
public Complex sinh() {
return new Complex(sinh(re) * Math.cos(im), cosh(re) *
Math.sin(im));
}
/**
The hyperbolic cosine of the Complex number (z is unchanged).
<br> cosh(a+i*b) = cosh(a)*cos(b) + i*(sinh(a)*sin(b))
@return cosh(z) where z = a+i*b
*/
public Complex cosh() {
return new Complex(cosh(re) *Math.cos(im), sinh(re) *
Math.sin(im));
}
/**
The tan of the Complex number (z is unchanged).
<br> tan (a+i*b) = sin(a+i*b) / cos(a+i*b)
@return tan(z) where z = a+i*b
*/
public Complex tan() {
return (this.sin()).divide(this.cos());
}
/**
The arctan of the Complex number (z is unchanged).
<br> tan^(-1)(a+i*b) = 1/2 i*(log(1-i*(a+b*i))-log(1+i*(a+b*i))) =
<br> -1/2 i*(log(i*a - b+1)-log(-i*a + b+1))
@return arctan(z) where z = a+i*b
*/
public Complex atan(){
Complex ima = new Complex(0.0,-1.0); //multiply by negative i
Complex num = new Complex(this.re,this.im-1.0);
Complex den = new Complex(-this.re,-this.im-1.0);
Complex two = new Complex(2.0, 0.0); // divide by 2
return ima.multiply(num.divide(den).log()).divide(two);
}
/**
* The Math.pow equivalent of two Complex numbers.
* @param z - the complex base in the form z = a + i*b
* @return z^y where z = a + i*b and y = c + i*d
*/
public Complex pow(Complex z){
Complex a = z.multiply(this.log());
return a.exp();
}
/**
* The Math.pow equivalent of a Complex number to the power
* of a double.
* @param d - the double to be taken as the power.
* @return z^d where z = a + i*b and d = double
*/
public Complex pow(double d){
Complex a=(this.log()).multiply(d);
return a.exp();
}
/**
Override the .toString() method to generate complex numbers, the
* string representation is now a literal Complex number.
@return a+i*b, a-i*b, a, or i*b as desired.
*/
public String toString() {
if (re != 0.0 && im > 0.0) {
return re + " + " + im +"*i";
}
if (re !=0.0 && im < 0.0) {
return re + " - "+ (-im) + "*i";
}
if (im == 0.0) {
return String.valueOf(re);
}
if (re == 0.0) {
return im + "*i";
}
return re + " + i*" + im;
}
}
将错误项增加到BigDecimal EPSILON = new BigDecimal(1E-50);
会导致程序返回java.lang.StackOverflowError。
/**************************************************************************
**
** Abel-Plana Formula for the Zeta Function
**
**************************************************************************
** Axion004
** 08/16/2015
**
** This program computes the value for Zeta(z) using a definite integral
** approximation through the Abel-Plana formula. The Abel-Plana formula
** can be shown to approximate the value for Zeta(s) through a definite
** integral. The integral approximation is handled through the Composite
** Simpson's Rule known as Adaptive Quadrature.
**************************************************************************/
import java.util.*;
import java.math.*;
public class AbelMain extends Complex {
public static void main(String[] args) {
AbelMain();
}
// Main method
public static void AbelMain() {
double re = 0, im = 0;
double start, stop, totalTime;
Scanner scan = new Scanner(System.in);
System.out.println("Calculation of the Riemann Zeta " +
"Function in the form Zeta(s) = a + ib.");
System.out.println();
System.out.print("Enter the value of [a] inside the Riemann Zeta " +
"Function: ");
try {
re = scan.nextDouble();
}
catch (Exception e) {
System.out.println("Please enter a valid number for a.");
}
System.out.print("Enter the value of [b] inside the Riemann Zeta " +
"Function: ");
try {
im = scan.nextDouble();
}
catch (Exception e) {
System.out.println("Please enter a valid number for b.");
}
start = System.currentTimeMillis();
Complex z = new Complex(re, im);
System.out.println("The value for Zeta(s) is " + AbelPlana(z));
stop = System.currentTimeMillis();
totalTime = (double) (stop-start) / 1000.0;
System.out.println("Total time taken is " + totalTime + " seconds.");
}
/**
* The definite integral for Zeta(z) in the Abel-Plana formula.
* <br> Numerator = Sin(z * arctan(t))
* <br> Denominator = (1 + t^2)^(z/2) * (e^(pi*t) + 1)
* @param t - the value of t passed into the integrand.
* @param z - The complex value of z = a + i*b
* @return the value of the complex function.
*/
public static Complex f(double t, Complex z) {
Complex num = (z.multiply(Math.atan(t))).sin();
Complex D1 = new Complex(1 + t*t, 0).pow(z.divide(2.0));
double D2 = Math.pow(Math.E, Math.PI * t) + 1.0;
Complex den = D1.multiply(D2);
return num.divide(den);
}
/**
* Adaptive quadrature - See http://www.mathworks.com/moler/quad.pdf
* @param a - the lower bound of integration.
* @param b - the upper bound of integration.
* @param z - The complex value of z = a + i*b
* @return the approximate numerical value of the integral.
*/
public static Complex adaptiveQuad(double a, double b, Complex z) {
BigDecimal EPSILON = new BigDecimal(1E-50);
double step = b - a;
double c = (a + b) / 2.0;
double d = (a + c) / 2.0;
double e = (b + c) / 2.0;
Complex S1 = (f(a, z).add(f(c, z).multiply(4)).add(f(b, z))).
multiply(step / 6.0);
Complex S2 = (f(a, z).add(f(d, z).multiply(4)).add(f(c, z).multiply(2))
.add(f(e, z).multiply(4)).add(f(b, z))).multiply(step / 12.0);
Complex result = (S2.minus(S1)).divide(15.0);
if(BigDecimal.valueOf(S2.minus(S1).mod()).compareTo(EPSILON) == -1
|| BigDecimal.valueOf(S2.minus(S1).mod()).compareTo(EPSILON)
== 0)
return S2.add(result);
else
return adaptiveQuad(a, c, z).add(adaptiveQuad(c, b, z));
}
/**
* The definite integral for Zeta(z) in the Abel-Plana formula.
* <br> C1 = 2^(z-1) / (z-1)
* <br> C2 = 2^(z)
* @param z - The complex value of z = a + i*b
* @return the value of Zeta(z) through C1, C2, and the
* quadrature approximation.
*/
public static Complex AbelPlana(Complex z) {
Complex two = new Complex(2.0, 0.0);
Complex C1 = two.pow(z.minus(1.0)).divide(z.minus(1.0));
Complex C2 = two.pow(z);
Complex mult = C2.multiply(adaptiveQuad(0, 10, z));
if ( z.re < 0 && z.re % 2 == 0 && z.im == 0)
return new Complex(0.0, 0.0);
else
return C1.minus(mult);
}
// Needed to reference the super class
public AbelMain(double re, double im) {
super(re, im);
}
}
测试运行
Calculation of the Riemann Zeta Function in the form Zeta(s) = a + ib.
Enter the value of [a] inside the Riemann Zeta Function: 54
Enter the value of [b] inside the Riemann Zeta Function: 2
Exception in thread "main" java.lang.StackOverflowError
at sun.misc.FpUtils.getExponent(FpUtils.java:147)
at java.lang.Math.getExponent(Math.java:1310)
at java.lang.StrictMath.floorOrCeil(StrictMath.java:355)
at java.lang.StrictMath.floor(StrictMath.java:340)
at java.lang.Math.floor(Math.java:424)
at sun.misc.FloatingDecimal.dtoa(FloatingDecimal.java:620)
at sun.misc.FloatingDecimal.<init>(FloatingDecimal.java:459)
at java.lang.Double.toString(Double.java:196)
at java.math.BigDecimal.valueOf(BigDecimal.java:1069)
at AbelMain.adaptiveQuad(AbelMain.java:92)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
at AbelMain.adaptiveQuad(AbelMain.java:97)
这两行指向
if(BigDecimal.valueOf(S2.minus(S1).mod()).compareTo(EPSILON) == -1
|| BigDecimal.valueOf(S2.minus(S1).mod()).compareTo(EPSILON)
== 0)
和
return adaptiveQuad(a, c, z).add(adaptiveQuad(c, b, z));
这个错误是由于无限递归造成的吗? epsilon的值可能必须高于某个阈值?
答案 0 :(得分:1)
是的,StackOverflowError
最多是由于无限递归。
您可以尝试调试代码,但在这样的实例中,旧方法可能更容易:在adaptiveQuad
方法的开头插入print语句,打印当前状态/参数。
当它死亡时,可能会看到清晰的图案。
答案 1 :(得分:0)
你混合&#34;漂浮&#34;和#34; BigDecimal&#34;,具有极好的副作用......特别是(我尝试使用输入数据54和2),当你使用&#34; step&#34;浮点变量,由于a和b之间的差异,一段时间后它到达一个&#34;固定点&#34; 1.0587911840678754E-22,由于复杂数据的内部表示,您使用浮点数。
那么,此时此步骤&#34;永远不会改变,S1和S2也没有,差异保持不变(&#34;结果&#34;评估0.0,-2.3915493791143544E-44)所以它永远不会在EPSILON(如1E-50)之下,算法无限地递归(或更好) ,直到爆炸)。换句话说,你使用BigDecimal避免了一边的近似,但你通过浮动用法重新引入它:)
尝试在任何地方删除浮动使用(在复合中也是如此),并且一切都应该正常运行。