使用HOG功能和cvsvm进行汽车检测

时间:2015-09-01 13:36:01

标签: opencv computer-vision svm object-detection

我正在做一个项目,我需要使用HOG功能检测汽车后部。一旦我计算了HOG特征,我就用正负样本训练了cvsvm。 cvsvm正确地对新数据进行分类。这是我用来训练cvsvm的代码。

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include "opencv2/opencv.hpp"  
#include "LinearSVM.h" 


using namespace cv;
using namespace std;



int main(void)
{
    LinearSVM *s = new LinearSVM;
    vector<float> values, values1, values2, values3, values4;

    FileStorage fs2("/home/ubuntu/Desktop/opencv-svm/vecSupport.yml",  FileStorage::READ);
    FileStorage fs3("/home/ubuntu/Desktop/opencv-svm/vecSupport1.yml", FileStorage::READ);
    FileStorage fs4("/home/ubuntu/Desktop/opencv-svm/vecSupport2.yml", FileStorage::READ);
    FileStorage fs5("/home/ubuntu/Desktop/opencv-svm/vecSupport3.yml", FileStorage::READ);
    FileStorage fs6("/home/ubuntu/Desktop/opencv-svm/vecSupport4.yml", FileStorage::READ);

    fs2["vector"]>>values;
    fs3["vector"]>>values1;
    fs4["vector"]>>values2;
    fs5["vector"]>>values3;
    fs6["vector"]>>values4;

    //fill with data
    values.insert(values.end(), values1.begin(), values1.end());
    values.insert(values.end(), values2.begin(), values2.end());


    fs2.release();
    fs3.release();
    fs4.release();

    float arr[188496];
    float car[2772];
    float noncar[2772];

    // move positive and negative to arr
    std::copy(values.begin(), values.end(), arr);
    std::copy(values3.begin(), values3.end(), car);
    std::copy(values4.begin(), values4.end(), noncar);



    float labels[68];
    for (unsigned int s = 0; s < 68; s++)
    {
     if (s<34)
     labels[s] = +1;
     else
     labels[s] = -1;
    }

    Mat labelsMat(68, 1, CV_32FC1, labels);
    Mat trainingDataMat(68,2772, CV_32FC1, arr);


    // Set up SVM's parameters
    CvSVMParams params;
    params.svm_type    = CvSVM::C_SVC;
    params.kernel_type = CvSVM::LINEAR;
    params.term_crit   = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);

    // Train the SVM
    LinearSVM SVM;
    SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);

    Mat matinput(1,2772,CV_32FC1,noncar);
    //cout<<matinput;

    float response = SVM.predict(matinput);
    cout<<"Response : "<<response<<endl;

    SVM.save("Classifier.xml");

    vector<float>primal;

      //  LinearSVM s;
    //s.getSupportVector(primal);
    SVM.getSupportVector(primal);

    FileStorage fs("/home/ubuntu/Desktop/opencv-svm/test.yml", FileStorage::WRITE);
    fs << "dector" << primal;
    fs.release();

}

// LinearSVM cpp file 
#include "LinearSVM.h"   
void LinearSVM::getSupportVector(std::vector<float>& support_vector) const {

    int sv_count = get_support_vector_count();
    const CvSVMDecisionFunc* df = decision_func;
    const double* alphas = df[0].alpha;
    double rho = df[0].rho;
    int var_count = get_var_count();
    support_vector.resize(var_count, 0);
    for (unsigned int r = 0; r < (unsigned)sv_count; r++) {
      float myalpha = alphas[r];
      const float* v = get_support_vector(r);
      for (int j = 0; j < var_count; j++,v++) {
        support_vector[j] += (-myalpha) * (*v);
      }
    }
    support_vector.push_back(rho);
}

// LinearSVM head file

#ifndef LINEAR_SVM_H_
#define LINEAR_SVM_H_
#include <opencv2/core/core.hpp>
#include <opencv2/ml/ml.hpp>

class LinearSVM: public CvSVM {
public:
  void getSupportVector(std::vector<float>& support_vector) const;
};  

#endif /* LINEAR_SVM_H_ */

在这一步之后,我得到了我可以输入setsvmdetector方法的矢量文件。这是我的代码。我使用了window size of 96 x 64scale of 1.11

#include <iostream>
#include <fstream>
#include <string>
#include <time.h>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <stdexcept>
#include <stdexcept>
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace std;
using namespace cv;

bool help_showed = false;

class Args
{
public:
    Args();
    static Args read(int argc, char** argv);

    string src;
    bool src_is_video;
    bool src_is_camera;
    int camera_id;

    bool write_video;
    string dst_video;
    double dst_video_fps;

    bool make_gray;

    bool resize_src;
    int width, height;

    double scale;
    int nlevels;
    int gr_threshold;

    double hit_threshold;
    bool hit_threshold_auto;

    int win_width;
    int win_stride_width, win_stride_height;

    bool gamma_corr;
};


class App
{
public:
    App(const Args& s);
    void run();

    void handleKey(char key);

    void hogWorkBegin();
    void hogWorkEnd();
    string hogWorkFps() const;

    void workBegin();
    void workEnd();
    string workFps() const;

    string message() const;

private:
    App operator=(App&);

    Args args;
    bool running;

    bool use_gpu;
    bool make_gray;
    double scale;
    int gr_threshold;
    int nlevels;
    double hit_threshold;
    bool gamma_corr;

    int64 hog_work_begin;
    double hog_work_fps;

    int64 work_begin;
    double work_fps;
};

static void printHelp()
{
    cout << "Histogram of Oriented Gradients descriptor and detector sample.\n"
         << "\nUsage: hog_gpu\n"
         << "  (<image>|--video <vide>|--camera <camera_id>) # frames source\n"
         << "  [--make_gray <true/false>] # convert image to gray one or not\n"
         << "  [--resize_src <true/false>] # do resize of the source image or not\n"
         << "  [--width <int>] # resized image width\n"
         << "  [--height <int>] # resized image height\n"
         << "  [--hit_threshold <double>] # classifying plane distance threshold (0.0 usually)\n"
         << "  [--scale <double>] # HOG window scale factor\n"
         << "  [--nlevels <int>] # max number of HOG window scales\n"
         << "  [--win_width <int>] # width of the window (48 or 64)\n"
         << "  [--win_stride_width <int>] # distance by OX axis between neighbour wins\n"
         << "  [--win_stride_height <int>] # distance by OY axis between neighbour wins\n"
         << "  [--gr_threshold <int>] # merging similar rects constant\n"
         << "  [--gamma_correct <int>] # do gamma correction or not\n"
         << "  [--write_video <bool>] # write video or not\n"
         << "  [--dst_video <path>] # output video path\n"
         << "  [--dst_video_fps <double>] # output video fps\n";
    help_showed = true;
}

int main(int argc, char** argv)
{
    try
    {
        if (argc < 2)
            printHelp();
        Args args = Args::read(argc, argv);
        if (help_showed)
            return -1;
        App app(args);
        app.run();
    }
    catch (const Exception& e) { return cout << "error: "  << e.what() << endl, 1; }
    catch (const exception& e) { return cout << "error: "  << e.what() << endl, 1; }
    catch(...) { return cout << "unknown exception" << endl, 1; }
    return 0;
}


Args::Args()
{
    src_is_video = false;
    src_is_camera = false;
    camera_id = 0;

    write_video = false;
    dst_video_fps = 24.;

    make_gray = false;

    resize_src = false;
    width = 640;
    height = 480;

    scale = 1.11;
    nlevels = 13;
    gr_threshold = 1;
    hit_threshold = 1.4;
    hit_threshold_auto = true;

    win_width = 64;
    win_stride_width = 8;
    win_stride_height = 8;

    gamma_corr = true;
}


Args Args::read(int argc, char** argv)
{
    Args args;
    for (int i = 1; i < argc; i++)
    {
        if (string(argv[i]) == "--make_gray") args.make_gray = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--resize_src") args.resize_src = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--width") args.width = atoi(argv[++i]);
        else if (string(argv[i]) == "--height") args.height = atoi(argv[++i]);
        else if (string(argv[i]) == "--hit_threshold")
        {
            args.hit_threshold = atof(argv[++i]);
            args.hit_threshold_auto = false;
        }
        else if (string(argv[i]) == "--scale") args.scale = atof(argv[++i]);
        else if (string(argv[i]) == "--nlevels") args.nlevels = atoi(argv[++i]);
        else if (string(argv[i]) == "--win_width") args.win_width = atoi(argv[++i]);
        else if (string(argv[i]) == "--win_stride_width") args.win_stride_width = atoi(argv[++i]);
        else if (string(argv[i]) == "--win_stride_height") args.win_stride_height = atoi(argv[++i]);
        else if (string(argv[i]) == "--gr_threshold") args.gr_threshold = atoi(argv[++i]);
        else if (string(argv[i]) == "--gamma_correct") args.gamma_corr = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--write_video") args.write_video = (string(argv[++i]) == "true");
        else if (string(argv[i]) == "--dst_video") args.dst_video = argv[++i];
        else if (string(argv[i]) == "--dst_video_fps") args.dst_video_fps = atof(argv[++i]);
        else if (string(argv[i]) == "--help") printHelp();
        else if (string(argv[i]) == "--video") { args.src = argv[++i]; args.src_is_video = true; }
        else if (string(argv[i]) == "--camera") { args.camera_id = atoi(argv[++i]); args.src_is_camera = true; }
        else if (args.src.empty()) args.src = argv[i];
        else throw runtime_error((string("unknown key: ") + argv[i]));
    }
    return args;
}


App::App(const Args& s)
{
    cv::gpu::printShortCudaDeviceInfo(cv::gpu::getDevice());

    args = s;
    cout << "\nControls:\n"
         << "\tESC - exit\n"
         << "\tm - change mode GPU <-> CPU\n"
         << "\tg - convert image to gray or not\n"
         << "\t1/q - increase/decrease HOG scale\n"
         << "\t2/w - increase/decrease levels count\n"
         << "\t3/e - increase/decrease HOG group threshold\n"
         << "\t4/r - increase/decrease hit threshold\n"
         << endl;

    use_gpu = true;
    make_gray = args.make_gray;
    scale = args.scale;
    gr_threshold = args.gr_threshold;
    nlevels = args.nlevels;

    if (args.hit_threshold_auto)
        args.hit_threshold = args.win_width == 48 ? 1.4 : 0.;
    hit_threshold = args.hit_threshold;

    gamma_corr = args.gamma_corr;
/*
    if (args.win_width != 64 && args.win_width != 48)
        args.win_width = 64;*/

    cout << "Scale: " << scale << endl;
    if (args.resize_src)
        cout << "Resized source: (" << args.width << ", " << args.height << ")\n";
    cout << "Group threshold: " << gr_threshold << endl;
    cout << "Levels number: " << nlevels << endl;
    cout << "Win width: " << args.win_width << endl;
    cout << "Win stride: (" << args.win_stride_width << ", " << args.win_stride_height << ")\n";
    cout << "Hit threshold: " << hit_threshold << endl;
    cout << "Gamma correction: " << gamma_corr << endl;
    cout << endl;
}


void App::run()
{

    FileStorage fs("/home/ubuntu/Desktop/implemenatation/vecSupport.yml", FileStorage::READ);

    vector<float> detector;
    int frameCount;
    fs["vector"] >> detector; 

    for (unsigned int i=0; i<detector.size(); i++)
    {
     std::cout << std::fixed << std::setprecision(10) << detector[i] << std::endl;
    }

    fs.release();

    running = true;
    cv::VideoWriter video_writer;

    Size win_size(96,64); //(64, 128) or (48, 96)
    Size win_stride(args.win_stride_width, args.win_stride_height);

    // Create HOG descriptors and detectors here
/*
    vector<float> detector;
    if (win_size == Size(64, 128))
        detector = cv::gpu::HOGDescriptor::getPeopleDetector64x128();
    else
        detector = cv::gpu::HOGDescriptor::getPeopleDetector48x96();*/


    cv::gpu::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9,
                                   cv::gpu::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
                                   cv::gpu::HOGDescriptor::DEFAULT_NLEVELS);
    cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1,
                              HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS);
    gpu_hog.setSVMDetector(detector);
    cpu_hog.setSVMDetector(detector);

    while (running)
    {
        VideoCapture vc;
        Mat frame;

        if (args.src_is_video)
        {
            vc.open(args.src.c_str());
            if (!vc.isOpened())
                throw runtime_error(string("can't open video file: " + args.src));
            vc >> frame;
        }
        else if (args.src_is_camera)
        {
            vc.open(args.camera_id);
            if (!vc.isOpened())
            {
                stringstream msg;
                msg << "can't open camera: " << args.camera_id;
                throw runtime_error(msg.str());
            }
            vc >> frame;
        }
        else
        {
            frame = imread(args.src);
            if (frame.empty())
                throw runtime_error(string("can't open image file: " + args.src));
        }

        Mat img_aux, img, img_to_show;
        gpu::GpuMat gpu_img;

        // Iterate over all frames
        while (running && !frame.empty())
        {
            workBegin();

            // Change format of the image
            if (make_gray) cvtColor(frame, img_aux, CV_BGR2GRAY);
            else if (use_gpu) cvtColor(frame, img_aux, CV_BGR2BGRA);
            else frame.copyTo(img_aux);

            // Resize image
            if (args.resize_src) resize(img_aux, img, Size(args.width, args.height));
            else img = img_aux;
            img_to_show = img;

            gpu_hog.nlevels = nlevels;
            cpu_hog.nlevels = nlevels;

            vector<Rect> found;

            // Perform HOG classification
            hogWorkBegin();
            if (use_gpu)
            {
                gpu_img.upload(img);
                gpu_hog.detectMultiScale(gpu_img, found, hit_threshold, win_stride,
                                         Size(0, 0), scale, gr_threshold);
            }
            else cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride,
                                          Size(0, 0), scale, gr_threshold);
            hogWorkEnd();

            // Draw positive classified windows
            for (size_t i = 0; i < found.size(); i++)
            {
                Rect r = found[i];
                rectangle(img_to_show, r.tl(), r.br(), CV_RGB(0, 255, 0), 3);
            }

            if (use_gpu)
                putText(img_to_show, "Mode: GPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            else
                putText(img_to_show, "Mode: CPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            putText(img_to_show, "FPS (HOG only): " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            putText(img_to_show, "FPS (total): " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
            imshow("opencv_gpu_hog", img_to_show);

            if (args.src_is_video || args.src_is_camera) vc >> frame;

            workEnd();

            if (args.write_video)
            {
                if (!video_writer.isOpened())
                {
                    video_writer.open(args.dst_video, CV_FOURCC('x','v','i','d'), args.dst_video_fps,
                                      img_to_show.size(), true);
                    if (!video_writer.isOpened())
                        throw std::runtime_error("can't create video writer");
                }

                if (make_gray) cvtColor(img_to_show, img, CV_GRAY2BGR);
                else cvtColor(img_to_show, img, CV_BGRA2BGR);

                video_writer << img;
            }

            handleKey((char)waitKey(3));
        }
    }
}


void App::handleKey(char key)
{
    switch (key)
    {
    case 27:
        running = false;
        break;
    case 'm':
    case 'M':
        use_gpu = !use_gpu;
        cout << "Switched to " << (use_gpu ? "CUDA" : "CPU") << " mode\n";
        break;
    case 'g':
    case 'G':
        make_gray = !make_gray;
        cout << "Convert image to gray: " << (make_gray ? "YES" : "NO") << endl;
        break;
    case '1':
        scale *= 1.11;
        cout << "Scale: " << scale << endl;
        break;
    case 'q':
    case 'Q':
        scale /= 1.11;
        cout << "Scale: " << scale << endl;
        break;
    case '2':
        nlevels++;
        cout << "Levels number: " << nlevels << endl;
        break;
    case 'w':
    case 'W':
        nlevels = max(nlevels - 1, 1);
        cout << "Levels number: " << nlevels << endl;
        break;
    case '3':
        gr_threshold++;
        cout << "Group threshold: " << gr_threshold << endl;
        break;
    case 'e':
    case 'E':
        gr_threshold = max(0, gr_threshold - 1);
        cout << "Group threshold: " << gr_threshold << endl;
        break;
    case '4':
        hit_threshold+=0.25;
        cout << "Hit threshold: " << hit_threshold << endl;
        break;
    case 'r':
    case 'R':
        hit_threshold = max(0.0, hit_threshold - 0.25);
        cout << "Hit threshold: " << hit_threshold << endl;
        break;
    case 'c':
    case 'C':
        gamma_corr = !gamma_corr;
        cout << "Gamma correction: " << gamma_corr << endl;
        break;
    }
}


inline void App::hogWorkBegin() { hog_work_begin = getTickCount(); }

inline void App::hogWorkEnd()
{
    int64 delta = getTickCount() - hog_work_begin;
    double freq = getTickFrequency();
    hog_work_fps = freq / delta;
}

inline string App::hogWorkFps() const
{
    stringstream ss;
    ss << hog_work_fps;
    return ss.str();
}


inline void App::workBegin() { work_begin = getTickCount(); }

inline void App::workEnd()
{
    int64 delta = getTickCount() - work_begin;
    double freq = getTickFrequency();
    work_fps = freq / delta;
}

inline string App::workFps() const
{
    stringstream ss;
    ss << work_fps;
    return ss.str();
}

问题:

我无法检测到任何东西。有人可以看看我的工作,并可以让我知道我做错了什么。任何建议都很有价值。谢谢。从过去四周开始,我一遍又一遍地做这些步骤。

P.S:您可以找到yaml文件 here 并测试图片以及注释here

1 个答案:

答案 0 :(得分:1)

首先,按照建议对http://localhost:9000/build.sbt的数据进行分区。第二件事是使用RBF内核而不是线性内核是个好主意。我非常怀疑线性内核可以学习复杂的对象。简要说明cross-validation。最后,试验参数。要做到这一点,你需要检查参数空间的限制,已经有一段时间了,因为我没有使用SVM,因此我无法提供任何细节,但是具有20%交叉验证的网格搜索是一个良好的开端。