我有定义的归纳类型:
Inductive InL (A:Type) (y:A) : list A -> Prop :=
| InHead : forall xs:list A, InL y (cons y xs)
| InTail : forall (x:A) (xs:list A), InL y xs -> InL y (cons x xs).
Inductive SubSeq (A:Type) : list A -> list A -> Prop :=
| SubNil : forall l:list A, SubSeq nil l
| SubCons1 : forall (x:A) (l1 l2:list A), SubSeq l1 l2 -> SubSeq l1 (x::l2)
| SubCons2 : forall (x:A) (l1 l2:list A), SubSeq l1 l2 -> SubSeq (x::l1) (x::l2).
现在我必须证明该归纳类型的一系列属性,但我一直陷入困境。
Lemma proof1: forall (A:Type) (x:A) (l1 l2:list A), SubSeq l1 l2 -> InL x l1 -> InL x l2.
Proof.
intros.
induction l1.
induction l2.
exact H0.
Qed.
有人可以帮助我前进。
答案 0 :(得分:8)
事实上,直接对SubSet判断进行归纳更容易。 但是,你需要尽可能一般,所以这是我的建议:
Lemma proof1: forall (A:Type) (x:A) (l1 l2:list A),
SubSeq l1 l2 -> InL x l1 -> InL x l2.
(* first introduce your hypothesis, but put back x and In foo
inside the goal, so that your induction hypothesis are correct*)
intros.
revert x H0. induction H; intros.
(* x In [] is not possible, so inversion will kill the subgoal *)
inversion H0.
(* here it is straitforward: just combine the correct hypothesis *)
apply InTail; apply IHSubSeq; trivial.
(* x0 in x::l1 has to possible sources: x0 == x or x0 in l1 *)
inversion H0; subst; clear H0.
apply InHead.
apply InTail; apply IHSubSeq; trivial.
Qed.
“倒置”是一种检查归纳术语的策略,并为您提供构建此术语的所有可能方法!!没有任何归纳假设! 它只给你建设性的前提。
你可以通过l1然后l2的归纳直接完成它,但你必须手工构建正确的反演实例,因为你的归纳假设本来就很弱。
希望它有所帮助, 诉