以下代码用于并行csv处理:
#!/usr/bin/env python
import csv
from time import sleep
from multiprocessing import Pool
from multiprocessing import cpu_count
from multiprocessing import current_process
from pprint import pprint as pp
def init_worker(x):
sleep(.5)
print "(%s,%s)" % (x[0],x[1])
x.append(int(x[0])**2)
return x
def parallel_csv_processing(inputFile, outputFile, header=["Default", "header", "please", "change"], separator=",", skipRows = 0, cpuCount = 1):
# OPEN FH FOR READING INPUT FILE
inputFH = open(inputFile, "rt")
csvReader = csv.reader(inputFH, delimiter=separator)
# SKIP HEADERS
for skip in xrange(skipRows):
csvReader.next()
# PARALLELIZE COMPUTING INTENSIVE OPERATIONS - CALL FUNCTION HERE
try:
p = Pool(processes = cpuCount)
results = p.map(init_worker, csvReader, chunksize = 10)
p.close()
p.join()
except KeyboardInterrupt:
p.close()
p.join()
p.terminate()
# CLOSE FH FOR READING INPUT
inputFH.close()
# OPEN FH FOR WRITING OUTPUT FILE
outputFH = open(outputFile, "wt")
csvWriter = csv.writer(outputFH, lineterminator='\n')
# WRITE HEADER TO OUTPUT FILE
csvWriter.writerow(header)
# WRITE RESULTS TO OUTPUT FILE
[csvWriter.writerow(row) for row in results]
# CLOSE FH FOR WRITING OUTPUT
outputFH.close()
print pp(results)
# print len(results)
def main():
inputFile = "input.csv"
outputFile = "output.csv"
parallel_csv_processing(inputFile, outputFile, cpuCount = cpu_count())
if __name__ == '__main__':
main()
我想以某种方式衡量脚本的进度(只是纯文本而不是任何奇特的ASCII艺术)。我想到的一个选项是将init_worker
成功处理的行与input.csv中的所有行进行比较,并打印实际状态,例如:每一秒,你能指点我正确的解决方案吗?我发现了几篇有类似问题的文章,但我无法根据自己的需要调整它,因为它们都没有使用Pool
类和map
方法。我还想问一下p.close(), p.join(), p.terminate()
方法,我已经看到它们主要是Process
而不是Pool
类,它们是否需要Pool
类,我是否正确使用它们?使用p.terminate()
旨在用ctrl + c来杀死进程,但这是different故事,但还没有结束。谢谢。
PS:我的input.csv看起来像这样,如果重要的话:
0,0
1,3
2,6
3,9
...
...
48,144
49,147
PPS:正如我所说的那样,我是multiprocessing
中的新手,而我所放在一起的代码才有效。我可以看到的一个缺点是整个csv存储在内存中,所以如果你们有更好的想法,请不要犹豫,分享它。
修改
回复@ J.F.Sebastian
根据您的建议,这是我的实际代码:
#!/usr/bin/env python
import csv
from time import sleep
from multiprocessing import Pool
from multiprocessing import cpu_count
from multiprocessing import current_process
from pprint import pprint as pp
from tqdm import tqdm
def do_job(x):
sleep(.5)
# print "(%s,%s)" % (x[0],x[1])
x.append(int(x[0])**2)
return x
def parallel_csv_processing(inputFile, outputFile, header=["Default", "header", "please", "change"], separator=",", skipRows = 0, cpuCount = 1):
# OPEN FH FOR READING INPUT FILE
inputFH = open(inputFile, "rb")
csvReader = csv.reader(inputFH, delimiter=separator)
# SKIP HEADERS
for skip in xrange(skipRows):
csvReader.next()
# OPEN FH FOR WRITING OUTPUT FILE
outputFH = open(outputFile, "wt")
csvWriter = csv.writer(outputFH, lineterminator='\n')
# WRITE HEADER TO OUTPUT FILE
csvWriter.writerow(header)
# PARALLELIZE COMPUTING INTENSIVE OPERATIONS - CALL FUNCTION HERE
try:
p = Pool(processes = cpuCount)
# results = p.map(do_job, csvReader, chunksize = 10)
for result in tqdm(p.imap_unordered(do_job, csvReader, chunksize=10)):
csvWriter.writerow(result)
p.close()
p.join()
except KeyboardInterrupt:
p.close()
p.join()
# CLOSE FH FOR READING INPUT
inputFH.close()
# CLOSE FH FOR WRITING OUTPUT
outputFH.close()
print pp(result)
# print len(result)
def main():
inputFile = "input.csv"
outputFile = "output.csv"
parallel_csv_processing(inputFile, outputFile, cpuCount = cpu_count())
if __name__ == '__main__':
main()
以下是tqdm
的输出:
1 [elapsed: 00:05, 0.20 iters/sec]
这个输出是什么意思?在您引用的页面上tqdm
以循环方式使用:
>>> import time
>>> from tqdm import tqdm
>>> for i in tqdm(range(100)):
... time.sleep(1)
...
|###-------| 35/100 35% [elapsed: 00:35 left: 01:05, 1.00 iters/sec]
此输出有意义,但我的输出是什么意思?此外它似乎没有修复ctrl + c问题:点击ctrl + c脚本后抛出一些Traceback,如果我再次点击ctrl + c然后我得到新的Traceback等等。杀死它的唯一方法是将它发送到后台(ctr + z)然后杀死它(杀死%1)
答案 0 :(得分:11)
要显示进度,请将pool.map
替换为pool.imap_unordered
:
from tqdm import tqdm # $ pip install tqdm
for result in tqdm(pool.imap_unordered(init_worker, csvReader, chunksize=10)):
csvWriter.writerow(result)
tqdm
部分是可选的,请参阅Text Progress Bar in the Console
无意中,它修复了你的"整个csv存储在内存中" 和"未引发KeyboardInterrupt"问题。
这是一个完整的代码示例:
#!/usr/bin/env python
import itertools
import logging
import multiprocessing
import time
def compute(i):
time.sleep(.5)
return i**2
if __name__ == "__main__":
logging.basicConfig(format="%(asctime)-15s %(levelname)s %(message)s",
datefmt="%F %T", level=logging.DEBUG)
pool = multiprocessing.Pool()
try:
for square in pool.imap_unordered(compute, itertools.count(), chunksize=10):
logging.debug(square) # report progress by printing the result
except KeyboardInterrupt:
logging.warning("got Ctrl+C")
finally:
pool.terminate()
pool.join()
您应该每隔.5 * chunksize
秒批量查看输出。如果按Ctrl+C
;您应该在子进程和主进程中看到KeyboardInterrupt
。在Python 3中,主进程立即退出。在Python 2中,KeyboardInterrupt
被延迟,直到应该打印下一批(Python中的错误)。