如何在nolearn,lasagne中定义成本函数?

时间:2015-08-22 01:01:15

标签: python theano lasagne nolearn

我正在nolearn做一个神经网络,这是一个使用烤宽面条的Theano图书馆。

我不明白如何定义自己的成本函数。

输出层只有3个神经元[0, 1, 2],我希望它在给出1或2时大部分确定,否则 - 如果它不确定1,2,则只返回0

所以,我提出了一个成本函数(需要调整),其成本是1和2的两倍而不是0,但我无法理解如何告诉网络。

# optimization method:
from lasagne.updates import sgd
update=sgd,
update_learning_rate=0.0001

这是更新的代码,但是如何告诉SGD使用我的成本函数而不是它自己的?

修改 完整的网络代码是:

def nn_loss(data, x_period, columns, num_epochs, batchsize, l_rate=0.02):
    net1 = NeuralNet(
        layers=[('input', layers.InputLayer),
                ('hidden1', layers.DenseLayer),
                ('output', layers.DenseLayer),
                ],
        # layer parameters:
        batch_iterator_train=BatchIterator(batchsize),
        batch_iterator_test=BatchIterator(batchsize),

        input_shape=(None, int(x_period*columns)),
        hidden1_nonlinearity=lasagne.nonlinearities.rectify,
        hidden1_num_units=100,  # number of units in 'hidden' layer
        output_nonlinearity=lasagne.nonlinearities.sigmoid,
        output_num_units=3,

        # optimization method:
        update=nesterov_momentum,
        update_learning_rate=5*10**(-3),
        update_momentum=0.9,
        on_epoch_finished=[
            EarlyStopping(patience=20),
        ],
        max_epochs=num_epochs,
        verbose=1,

        # Here are the important parameters for multi labels
        regression=True,
        # objective_loss_function=multilabel_objective,
        # custom_score=("validation score", lambda x, y: np.mean(np.abs(x - y)))
        )

    # Train the network
    start_time = time.time()
    net1.fit(data['X_train'], data['y_train'])
}

修改 使用regression=True

时出错
Got 99960 testing datasets.
# Neural Network with 18403 learnable parameters

## Layer information

  #  name       size
---  -------  ------
  0  input       180
  1  hidden1     100
  2  output        3

Traceback (most recent call last):
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/compile/function_module.py", line 607, in __call__
    outputs = self.fn()
ValueError: GpuElemwise. Input dimension mis-match. Input 1 (indices start at 0) has shape[1] == 1, but the output's size on that axis is 3.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "train_nolearn_simple.py", line 272, in <module>
    main(**kwargs)
  File "train_nolearn_simple.py", line 239, in main
    nn_loss_fit = nn_loss(data, x_period, columns, num_epochs, batchsize)
  File "train_nolearn_simple.py", line 217, in nn_loss
    net1.fit(data['X_train'], data['y_train'])
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/nolearn/lasagne/base.py", line 416, in fit
    self.train_loop(X, y)
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/nolearn/lasagne/base.py", line 462, in train_loop
    self.train_iter_, Xb, yb)
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/nolearn/lasagne/base.py", line 516, in apply_batch_func
    return func(Xb) if yb is None else func(Xb, yb)
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/compile/function_module.py", line 618, in __call__
    storage_map=self.fn.storage_map)
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/gof/link.py", line 297, in raise_with_op
    reraise(exc_type, exc_value, exc_trace)
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/six.py", line 658, in reraise
    raise value.with_traceback(tb)
  File "/Users/morgado/anaconda/lib/python3.4/site-packages/theano/compile/function_module.py", line 607, in __call__
    outputs = self.fn()
ValueError: GpuElemwise. Input dimension mis-match. Input 1 (indices start at 0) has shape[1] == 1, but the output's size on that axis is 3.
Apply node that caused the error: GpuElemwise{Sub}[(0, 1)](GpuElemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0, GpuFromHost.0)
Toposort index: 22
Inputs types: [CudaNdarrayType(float32, matrix), CudaNdarrayType(float32, matrix)]
Inputs shapes: [(200, 3), (200, 1)]
Inputs strides: [(3, 1), (1, 0)]
Inputs values: ['not shown', 'not shown']
Outputs clients: [[GpuCAReduce{pre=sqr,red=add}{1,1}(GpuElemwise{Sub}[(0, 1)].0), GpuElemwise{Mul}[(0, 0)](GpuElemwise{Sub}[(0, 1)].0, GpuElemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0, GpuElemwise{sub,no_inplace}.0), GpuElemwise{mul,no_inplace}(CudaNdarrayConstant{[[ 2.]]}, GpuElemwise{Composite{(inv(i0) / i1)},no_inplace}.0, GpuElemwise{Sub}[(0, 1)].0, GpuElemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0, GpuElemwise{sub,no_inplace}.0)]]

HINT: Re-running with most Theano optimization disabled could give you a back-trace of when this node was created. This can be done with by setting the Theano flag 'optimizer=fast_compile'. If that does not work, Theano optimizations can be disabled with 'optimizer=None'.
HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.

1 个答案:

答案 0 :(得分:1)

我在分类任务中使用了自定义丢失功能,并认为我也会与您分享。我基本上希望根据标签不同地强调训练数据。

add_action('woocommerce_single_product_summary', 'single_product_prev_next' );
function single_product_prev_next() {
    if ( is_singular() ) { ?>
        <nav>
            <span class="nav-previous alignleft"><?php previous_post_link('%link', '<i class="icon-right"></i>', FALSE); ?></span>
            <span class="nav-next alignright"><?php next_post_link('%link', '<i class="icon-left"></i>', FALSE); ?></span>
        </nav>
        <?php
        } 
  }

This是我找到如何实现它的地方。