消除神经网络层的偏差

时间:2016-02-21 08:03:20

标签: python lasagne nolearn

我想删除偏见参数。我尝试将thebias=None包含在我定义神经网络的地方,但它没有用。

net1 = NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
#('hidden', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape=(None,2), # 2 inputs
#hidden_num_units=200, # number of units in hidden layer
output_nonlinearity=None, # output layer uses identity function
output_num_units=1, # 1 target value

# optimization method:
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,

regression=True,  # flag to indicate we're dealing with regression problem
max_epochs=400,  # we want to train this many epochs
verbose=1,
bias = None
) 

2 个答案:

答案 0 :(得分:1)

根据Lasagne Documentation for conv layers(密集图层类似),您有以下偏见选项:

b = None 

至少根据Lasagne文档,似乎没有任何图层的“偏见”参数,而是使用“b”。我不能代表NoLearn,因为我不使用那个包。

编辑:

以下是一些烤宽面条示例代码:

import lasagne
net = {}
net['input'] = lasagne.layers.InputLayer(shape=(None, 3, 224,224), input_var=None)
net['conv'] = lasagne.layers.Conv2DLayer(net['input'], num_filters=5, filter_size=3, b = None)
print net['conv'].get_params()

返回:

[W]
单独,这意味着没有偏见术语。

对于NoLearn,我不确定,因为我不使用该包。

答案 1 :(得分:1)

# Build the network yourself
inputs = InputLayer(shape=(None, 2))
network = DenseLayer(inputs, num_units=1, nonlinearity=None, b = None)

net1 = NeuralNet(
network,
#We don't need any of these parameters since we provided them above
# layer parameters:
#input_shape=(None,2), # 2 inputs
#hidden_num_units=200, # number of units in hidden layer
#output_nonlinearity=None, # output layer uses identity function
#output_num_units=1, # 1 target value

# optimization method:
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,

regression=True,  # flag to indicate we're dealing with regression problem
max_epochs=400,  # we want to train this many epochs
verbose=1,
bias = None
) 

我认为这应该有效。可能有一个kwarg在网络中传递(我无法记住),但我认为默认情况下它是第一个参数,如果没有给出。