我试图在sklearn中实现R的随机森林回归模型的R特征重要性评分方法;根据R&#39的文档:
第一个度量是根据置换OOB数据计算的:对于每棵树, 记录数据袋外部分的预测误差 (分类错误率,回归MSE)。然后是一样的 置换每个预测变量后完成。和...之间的不同 然后将这两个树在所有树上取平均值,并将其归一化 差异的标准差。如果标准偏差为 对于变量,差异等于0,不进行除法 (但在这种情况下,平均值几乎总是等于0)。
因此,如果我理解正确,我需要能够为每个树中的OOB样本置换每个预测变量(特征)。
我知道我可以使用类似的东西访问训练有素的森林中的每棵树
numberTrees = 100
clf = RandomForestRegressor(n_estimators=numberTrees)
clf.fit(X,Y)
for tree in clf.estimators_:
do something
是否有获取每棵树的OOB样本列表?也许我可以使用每棵树的random_state
来得出OOB样本列表?
答案 0 :(得分:3)
虽然R使用OOB样本,但我发现通过使用所有训练样本,我在scikit中得到了类似的结果。我正在做以下事情:
# permute training data and score against its own model
epoch = 3
seeds = range(epoch)
scores = defaultdict(list) # {feature: change in R^2}
# repeat process several times and then average and then average the score for each feature
for j in xrange(epoch):
clf = RandomForestRegressor(n_jobs = -1, n_estimators = trees, random_state = seeds[j],
max_features = num_features, min_samples_leaf = leaf)
clf = clf.fit(X_train, y_train)
acc = clf.score(X_train, y_train)
print 'Epoch', j
# for each feature, permute its values and check the resulting score
for i, col in enumerate(X_train.columns):
if i % 200 == 0: print "- feature %s of %s permuted" %(i, X_train.shape[1])
X_train_copy = X_train.copy()
X_train_copy[col] = np.random.permutation(X_train[col])
shuff_acc = clf.score(X_train_copy, y_train)
scores[col].append((acc-shuff_acc)/acc)
# get mean across epochs
scores_mean = {k: np.mean(v) for k, v in scores.iteritems()}
# sort scores (best first)
scores_sorted = pd.DataFrame.from_dict(scores_mean, orient='index').sort(0, ascending = False)