我正在使用dplyr和扫帚组合,并尝试根据数据组内部的条件拟合回归模型。最后,我想提取每组的回归系数。
到目前为止,我为所有组获得了相同的拟合结果(每组用字母a:f
分隔)。这是主要问题。
library(dplyr)
library(minpack.lm)
library(broom)
direc <- rep(rep(c("North","South"),each=20),times=6)
V <- rep(c(seq(2,40,length.out=20),seq(-2,-40,length.out=20)),times=1)
DQ0 = c(replicate(2, sort(runif(20,0.001,1))))
DQ1 = c(replicate(2, sort(runif(20,0.001,1))))
DQ2 = c(replicate(2, sort(runif(20,0.001,1))))
DQ3 = c(replicate(2, sort(runif(20,0.001,1))))
No = c(replicate(1,rep(letters[1:6],each=40)))
df <- data.frame(direc,V,DQ0,DQ1,DQ2,DQ3,No)
适合条件可描述如下;
如果direc=North
和V<J1
,exp((-t_pw)/f0*exp(-del1*(1-V/J1)^2))
和direc=South
符合等式V>J2
,那么V<J1
用同样的方程拟合。在这两种情况下,如果V>J2
&amp;对于每个案例,1
都不满意返回nls
。
更新
我发现条件nls_fit=nlsLM(DQ0~ifelse(df$direc=="North"&V<J1, exp((-t_pw)/f0*exp(-del1*(1-V/J1)^2)),1)*ifelse(df$direc=="South"&V>J2, exp((-t_pw)/f0*exp(-del2*(1-V/J2)^2)),1)
,data=df,start=c(del1=1,J1=15,del2=1,J2=-15),trace=T)
可以通过此链接中的建议conditional-formula-for-nls。
Nonlinear regression model
model: DQ0 ~ ifelse(df$direc == "North" & V < J1, exp((-t_pw)/f0 * exp(-del1 * (1 - V/J1)^2)), 1) * ifelse(df$direc == "South" & V > J2, exp((-t_pw)/f0 * exp(-del2 * (1 - V/J2)^2)), 1)
data: df
del1 J1 del2 J2
1.133 23.541 1.079 -20.528
residual sum-of-squares: 16.93
Number of iterations to convergence: 4
Achieved convergence tolerance: 1.49e-08
nls_fit
DQ0:DQ3
另一方面,当我尝试适应其他列,如DQ1,DQ2和DQ3;
我试过了 nls_fit = nlsLM(DF [,3:6]〜ifelse(.....
nls.lm中的错误(par = start,fn = FCT,jac = jac,control = control,lower = lower,: fn函数的评估返回非敏感值!
现在问题归结为多列拟合。如何安装多列DQ0
?我检查了how to succinctly write a formula with many variables from a data frame?,但找不到我的数据框中使用的解决方案。
此外,当我在其组内部适合a:f
列时
从输出中可以看出,为所有组df_new<- df%>%
group_by(No)%>%
do(data.frame(model=tidy()))>%
ungroup
Source: local data frame [24 x 6]
No model.term model.estimate model.std.error model.statistic model.p.value
1 a del1 1.132546 9024.255 1.255002e-04 0.9999000
2 a J1 23.540764 984311.373 2.391597e-05 0.9999809
3 a del2 1.079182 27177.895 3.970809e-05 0.9999684
4 a J2 -20.527520 2362268.839 -8.689748e-06 0.9999931
5 b del1 1.132546 9024.255 1.255002e-04 0.9999000
6 b J1 23.540764 984311.373 2.391597e-05 0.9999809
7 b del2 1.079182 27177.895 3.970809e-05 0.9999684
8 b J2 -20.527520 2362268.839 -8.689748e-06 0.9999931
9 c del1 1.132546 9024.255 1.255002e-04 0.9999000
10 c J1 23.540764 984311.373 2.391597e-05 0.9999809
.. .. ... ... ... ... ...
df_new
{{1}}