如何使用sc.textFile将文件从本地文件系统加载到Spark?我是否需要更改任何-env变量?此外,当我在未安装Hadoop的Windows上尝试相同时,我也遇到了同样的错误。
> val inputFile = sc.textFile("file///C:/Users/swaapnika/Desktop/to do list")
/17 22:28:18 INFO MemoryStore: ensureFreeSpace(63280) called with curMem=0, maxMem=278019440
/17 22:28:18 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 61.8 KB, free 265.1 MB)
/17 22:28:18 INFO MemoryStore: ensureFreeSpace(19750) called with curMem=63280, maxMem=278019440
/17 22:28:18 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 19.3 KB, free 265.1 MB)
/17 22:28:18 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:53659 (size: 19.3 KB, free: 265.1 MB)
/17 22:28:18 INFO SparkContext: Created broadcast 0 from textFile at <console>:21
File: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at textFile at <console>:21
> val words = input.flatMap(line => line.split(" "))
ole>:19: error: not found: value input
val words = input.flatMap(line => line.split(" "))
^
> val words = inputFile.flatMap(line => line.split(" "))
: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:23
> val counts = words.map(word => (word, 1)).reduceByKey{case (x, y) => x + y}
apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/c:/spark-1.4.1-bin-hadoop2.6/bin/file/C:/Users/swaapnika/Desktop/to do list
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:285)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:228)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:313)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:207)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:32)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:219)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:217)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:217)
at org.apache.spark.Partitioner$.defaultPartitioner(Partitioner.scala:65)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$reduceByKey$3.apply(PairRDDFunctions.scala:290)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$reduceByKey$3.apply(PairRDDFunctions.scala:290)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:286)
at org.apache.spark.rdd.PairRDDFunctions.reduceByKey(PairRDDFunctions.scala:289)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:25)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:30)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:32)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:34)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:36)
at $iwC$$iwC$$iwC.<init>(<console>:38)
at $iwC$$iwC.<init>(<console>:40)
at $iwC.<init>(<console>:42)
at <init>(<console>:44)
at .<init>(<console>:48)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1338)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at
org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:665)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:170)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:193)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:112)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>
答案 0 :(得分:0)
我再次检查了所有依赖项和环境变量。 实际路径“file:///home/..../ ..txt”将从本地文件系统获取数据,因为hadoop env.sh文件的默认文件系统设置为fs.defaultFs。 如果我们将Spark-env.sh保留为默认值而不进行任何更改,它会在遇到“file:// ...”时使用本地文件系统,而当路径为“hdfs:// ..”时则使用hdfs。 如果您特别需要任何文件系统将HADOOP_CONF_DIR导出到spark-env.sh 它将支持Hadoop支持的任何文件系统。 这是我的观察。接受任何更正或建议。谢谢
答案 1 :(得分:0)
尝试更改
val inputFile = sc.textFile("file///C:/Users/swaapnika/Desktop/to do list")
到此:
val inputFile = sc.textFile("file:///Users/swaapnika/Desktop/to do list")
我对hadoop和spark也相当新,但是从我收集的内容来看,当在Windows上本地运行spark时,传递给file:///
的字符串sc.textFile
已经引用{{1 }}
答案 2 :(得分:0)
您定义的文件路径不正确。
尝试更改
sc.textFile("file///C:/Users/swaapnika/Desktop/to do list")
到
sc.textFile("file://C:/Users/swaapnika/Desktop/to do list")
或
sc.textFile("C:/Users/swaapnika/Desktop/to do list")
答案 3 :(得分:0)
在群集中运行spark时会发生此错误。当您向spark集群提交作业时,集群管理器(YARN或Mesos或任何)将其提交给工作节点。当工作节点试图找到我们需要加载到文件中的文件路径时,它会失败,因为工作人员没有这样的文件。因此,尝试在本地模式下运行spark-shell并重试,
sc.textFile("file:///C:/Users/swaapnika/Desktop/to do list")
class Student < ActiveRecord::Base
has_many :studentcourses
has_many :courses, :through => :studentcourses
end
class StudentCourse < ActiveRecord::Base //join table
belongs_to :course
belongs_to :student
end
class Course < ActiveRecord::Base
has_many :studentcourses
has_many :students, :through => :studentcourses
has_many :lessons
end
class Lesson < ActiveRecord::Base
belongs_to :course
end
请告诉我这是否有帮助。