我有一个pandas数据框,我想将其绘制成条形图,数据具有以下形式;
Year ISO Value Color
2007 GBR 500 0.303
DEU 444 0.875
FRA 987 0.777
2008 GBR 658 0.303
USA 432 0.588
DEU 564 0.875
2009 ... etc
我试图按照以下方式迭代数据;
import matplotlib.pyplot as plt
import matplotlib.cm as cm
conditions=np.unique[df['Color']]
plt.figure()
ax=plt.gca()
for i,cond in enumerate(conditions):
print 'cond: ',cond
df['Value'].plot(kind='bar', ax=ax, color=cm.Accent(float(i)/n))
minor_XT=ax.get_xaxis().get_majorticklocs()
df['ISO']=minor_XT
major_XT=df.groupby(by=df.index.get_level_values(0)).first()['ISO'].tolist()
df.__delitem__('ISO')
plt.xticks(rotation=70)
ax.set_xticks(minor_XT, minor=True)
ax.set_xticklabels(df.index.get_level_values(1), minor=True, rotation=70)
ax.tick_params(which='major', pad=45)
_=plt.xticks(major_XT, (df.index.get_level_values(0)).unique(), rotation=0)
plt.tight_layout()
plt.show()
但这一切都用一种颜色,对我做错了什么建议?
答案 0 :(得分:2)
由于df['Value'].plot(kind='bar')
将绘制所有条形图,因此您无需迭代conditions
。此外,由于plot(kind='bar')
基本上调用了matplotlib.pyplot.bar
,我们可以为它提供与数据数组长度相同的颜色列表,并使用这些颜色为每个条形图着色。这是一个略微简化的例子(我将让你弄清楚滴答和刻度标签):
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
df = pd.DataFrame([
[2007,'GBR',500,0.303],
[2007,'DEU',444,0.875],
[2007,'FRA',987,0.777],
[2008,'GBR',658,0.303],
[2008,'USA',432,0.588],
[2008,'DEU',564,0.875]],
columns=['Year','ISO','Value','Color'])
colors = cm.Accent(df['Color']/len(df['Color']))
fig=plt.figure()
ax=fig.add_subplot(111)
df['Value'].plot(kind='bar',ax=ax,color=colors)
plt.show()