我尝试使用带有4个过滤器(4 theta)的OpenCV for Java中的gabor过滤器来增强指纹图像:
private Mat enhanceImg(Mat myImg){
// prepare the output matrix for filters
Mat gabor1 = new Mat (myImg.width(), myImg.height(), CvType.CV_8UC1);
Mat gabor2 = new Mat (myImg.width(), myImg.height(), CvType.CV_8UC1);
Mat gabor3 = new Mat (myImg.width(), myImg.height(), CvType.CV_8UC1);
Mat gabor4 = new Mat (myImg.width(), myImg.height(), CvType.CV_8UC1);
Mat enhanced = new Mat (myImg.width(), myImg.height(), CvType.CV_8UC1);
//predefine parameters for Gabor kernel
Size kSize = new Size(31,31);
double theta1 = 0;
double theta2 = 45;
double theta3 = 90;
double theta4 = 135;
double lambda = 30;
double sigma = 24;
double gamma = 1;
double psi = 0;
// the filters kernel
Mat kernel1 = Imgproc.getGaborKernel(kSize, sigma, theta1, lambda, gamma, psi, CvType.CV_32F);
Mat kernel2 = Imgproc.getGaborKernel(kSize, sigma, theta2, lambda, gamma, psi, CvType.CV_32F);
Mat kernel3 = Imgproc.getGaborKernel(kSize, sigma, theta3, lambda, gamma, psi, CvType.CV_32F);
Mat kernel4 = Imgproc.getGaborKernel(kSize, sigma, theta4, lambda, gamma, psi, CvType.CV_32F);
// apply filters on my image. The result is stored in gabor1...4
Imgproc.filter2D(myImg, gabor1, -1, kernel1);
Imgproc.filter2D(myImg, gabor2, -1, kernel2);
Imgproc.filter2D(myImg, gabor3, -1, kernel3);
Imgproc.filter2D(myImg, gabor4, -1, kernel4);
//enhanced = gabor1+gabor2+gabor3+gabor4 - something like that
return enhanced;
}
现在,我的问题是如何组合这些结果,gabor1,gabor2,gabor3和gabor4,以获得整个增强图像。
我尝试使用Core.add(src1,src2,dst)
或
Core.addWeighted(enhanced , 0, gabor1, 1, 0, enhanced );
Core.addWeighted(enhanced , 1, gabor2, 1, 0, enhanced );
Core.addWeighted(enhanced , 1, gabor3, 1, 0, enhanced );
Core.addWeighted(enhanced , 1, gabor4, 1, 0, enhanced );
,但似乎做了一种减法,最后我得到的图像几乎是白色的 希望有人可以帮助我。我使用Java但C ++实现非常相似。
答案 0 :(得分:5)
好的,我想我得到了解决问题的方法。
我的输入图像(myImg)的类型为CV_8UC1,但gabor内核的类型为CV_32F或CV_64F。所以我必须在处理之前将myImg转换为该类型:
myImg.convertTo(myImg, CvType.CV_32F);
另外,我将gabor1 ... 4定义为CV_32F类型而不是CV_8UC1
然后,我将Core.addWeighted(...)
应用于所有4个gabor过滤器(如上所述),我得到了预期的结果。
这有点傻,但这是一个常见的错误(我认为)。