OpenMDAO v0.13:将程序集中nxm数组的切片连接到n个独立组件中的1xm数组

时间:2015-08-08 00:37:44

标签: arrays optimization slice connection openmdao

我正在尝试将nxm数组的行连接到1xm个别组件中的n数组,或将1xn*m数组的切片连接到{{1} 1xm个别组件中的数组。然后,原始nnxm数组将用作优化参数。问题是当我这样做时,组件似乎有一些严重的问题。我要么得到明显错误的答案或大小不匹配错误。

我已经能够通过使用1xn*m传递n 1xm数组来使程序集正常工作,但我更喜欢先前解释的方法。如果有人能告诉我如何以正确的方式完成这项工作,我将非常感激。

我提供了一个简单的代码示例,说明哪些有效,哪些代码可以执行。首先展示了我想要使用的方法,然后是我已经开始使用的方法,但是非常不喜欢。

我想做什么

exec()

什么有效

    from openmdao.main.api import Assembly, Component
    from openmdao.lib.datatypes.api import Float, Array, List
    from openmdao.lib.drivers.api import DOEdriver, SLSQPdriver, COBYLAdriver, CaseIteratorDriver
    from pyopt_driver.pyopt_driver import pyOptDriver

    import numpy as np


    class component1(Component):

        x = Float(iotype='in')
        y = Float(iotype='in')
        term1 = Float(iotype='out')
        a = Float(iotype='in', default_value=1)
        def execute(self):
            x = self.x
            a = self.a

            term1 = a*x**2
            self.term1 = term1

            print "In comp1", self.name, self.a, self.x, self.term1

        def list_deriv_vars(self):
            return ('x',), ('term1',)

        def provideJ(self):

            x = self.x
            a = self.a
            dterm1_dx = 2.*a*x

            J = np.array([[dterm1_dx]])
            print 'In comp1, J = %s' % J

            return J


    class component2(Component):

        x = Float(iotype='in')
        y = Float(iotype='in')
        term1 = Float(iotype='in')
        f = Float(iotype='out')
        q = Array(np.zeros(2), iotype='in', dtype='float')

        def execute(self):

            y = self.y + self.q[0]
            x = self.x + self.q[1]
            term1 = self.term1
            f = term1 + x + y**2
            print 'q = %s' % self.q
            self.f = f
            print "In comp2", self.name, self.x, self.y, self.term1, self.f



    class summer(Component):


        total = Float(iotype='out', desc='sum of all f values')

        def __init__(self, size):
            super(summer, self).__init__()
            self.size = size

            self.add('fs', Array(np.zeros(size), iotype='in', desc='f values from all cases'))

        def execute(self):
            self.total = sum(self.fs)
            print 'In summer, fs = %s and total = %s' % (self.fs, self.total)


    class assembly(Assembly):

        x = Float(iotype='in')
        y = Float(iotype='in')
        total = Float(iotype='out')

        def __init__(self, size):

            super(assembly, self).__init__()

            self.size = size

            self.add('a_vals', Array(np.zeros(size), iotype='in', dtype='float'))
            self.add('q', Array(np.zeros((size, 2)), iotype='in', dtype='float'))
            self.add('fs', Array(np.zeros(size), iotype='out', dtype='float'))

            print 'in init a_vals = %s, fs = %s' % (self.a_vals, self.fs)


        def configure(self):

            self.add('driver', SLSQPdriver())
            # self.add('driver', pyOptDriver())
            # self.driver.optimizer = 'SNOPT'
            # self.driver.pyopt_diff = True

            #create this first, so we can connect to it
            self.add('summer', summer(size=len(self.a_vals)))
            self.connect('summer.total', 'total')

            print 'in configure a_vals = %s' % self.a_vals

            # create instances of components
            for i in range(0, self.size):
                c1 = self.add('comp1_%d' % i, component1())
                c1.missing_deriv_policy = 'assume_zero'

                c2 = self.add('comp2_%d'%i, component2())
                self.connect('a_vals[%d]' % i, 'comp1_%d.a' % i)
                self.connect('x', ['comp1_%d.x' % i, 'comp2_%d.x' % i])
                self.connect('y', ['comp1_%d.y' % i, 'comp2_%d.y' % i])
                self.connect('comp1_%d.term1' % i, 'comp2_%d.term1' % i)
                self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
                self.connect('comp2_%d.f' % i, 'summer.fs[%d]' % i)

                self.driver.workflow.add(['comp1_%d' % i, 'comp2_%d' % i])

            # self.connect('summer.fs[:]', 'fs[:]')
            self.driver.workflow.add(['summer'])

            # set up main driver (optimizer)
            self.driver.iprint = 1
            self.driver.maxiter = 100
            self.driver.accuracy = 1.0e-6
            self.driver.add_parameter('x', low=-5., high=5.)
            self.driver.add_parameter('y', low=-5., high=5.)
            self.driver.add_parameter('q', low=0., high=5.)
            self.driver.add_objective('summer.total')


    if __name__ == "__main__":
        """ the result should be -1 at (x, y) = (-0.5, 0) """

        import time
        from openmdao.main.api import set_as_top
        a_vals = np.array([1., 1., 1., 1.])
        test = set_as_top(assembly(size=len(a_vals)))
        test.a_vals = a_vals
        print 'in main, test.a_vals = %s, test.fs = %s' % (test.a_vals, test.fs)
        test.x = 2.
        test.y = -5
        test.q = np.tile(np.arange(0., 2.), (4, 1))
        print test.q

        tt = time.time()
        test.run()

        print "Elapsed time: ", time.time()-tt, "seconds"

        print 'result = ', test.summer.total
        print '(x, y) = (%s, %s)' % (test.x, test.y)
        print 'fs = %s' % test.fs
        print test.fs

----------

2 个答案:

答案 0 :(得分:1)

我可以通过对q和comp2_.q的连接进行少量更改来解决设置错误。

我来自:

self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)

到:

self.connect('q[%d]' % i, 'comp2_%d.q' % i)

然后问题贯穿其第一次评估。不幸的是,它在衍生物计算中做了某些事情。即使我打开SNOPT并使用pyopt_diff = True,也会发生这种情况。所以这个玩具问题还有其他问题。但删除额外的:会让您超越连接错误。

答案 1 :(得分:1)

所以,我也看了你的模特,你肯定没有做错任何事。在为最佳优化问题组装网络图时,模型设置中存在一个错误。它似乎从输入中丢失了q变量,并且从未在用于求解总导数的向量中为其分配空间。我认为它对q感到困惑,因为它与任何东西没有直接的完全连接,只是将连接切片到编号为comp2s

您的第一个解决方法可能是最好的解决方法。但是,我还发现了另一个。我创建了一个名为fakefake的虚拟组件;除了允许您将完整的q向量直接连接到某个东西之外,此组件不执行任何操作。然后,我获取其输出fakefake.out并在约束中使用它。由于该输出永远不会改变,因此总是满足约束。此解决方法有效,因为完整的q连接可防止在修剪期间错误地从图表中删除输入。

通过这些更改,我能够让它运行。我不确定答案是否正确,因为我不知道它们应该是什么。我在下面提供了我的代码。请注意,我还添加了component2summer的衍生产品。

from openmdao.main.api import Assembly, Component
from openmdao.lib.datatypes.api import Float, Array, List
from openmdao.lib.drivers.api import DOEdriver, SLSQPdriver, COBYLAdriver, CaseIteratorDriver
from pyopt_driver.pyopt_driver import pyOptDriver

import numpy as np


class component1(Component):

    x = Float(iotype='in')
    y = Float(iotype='in')
    term1 = Float(iotype='out')
    a = Float(iotype='in', default_value=1)
    def execute(self):
        x = self.x
        a = self.a

        term1 = a*x**2
        self.term1 = term1

        print "In comp1", self.name, self.a, self.x, self.term1

    def list_deriv_vars(self):
        return ('x',), ('term1',)

    def provideJ(self):

        x = self.x
        a = self.a
        dterm1_dx = 2.*a*x

        J = np.array([[dterm1_dx]])
        print 'In comp1, J = %s' % J

        return J


class component2(Component):

    x = Float(iotype='in')
    y = Float(iotype='in')
    term1 = Float(iotype='in')
    q = Array(np.zeros(2), iotype='in', dtype='float')

    f = Float(iotype='out')

    def execute(self):

        y = self.y + self.q[0]
        x = self.x + self.q[1]
        term1 = self.term1
        f = term1 + x + y**2
        print 'q = %s' % self.q
        self.f = f
        print "In comp2", self.name, self.x, self.y, self.term1, self.f

    def list_deriv_vars(self):
        return ('x', 'y', 'term1', 'q'), ('f',)

    def provideJ(self):
        # f = (y+q0)**2 + x + q1 + term1

        df_dx = 1.0
        df_dy = 2.0*self.y + 2.0*self.q[0]
        df_dterm1 = 1.0
        df_dq = np.array([2.0*self.q[0] + 2.0*self.y, 1.0])

        J = np.array([[df_dx, df_dy, df_dterm1, df_dq[0], df_dq[1]]])
        return J

class summer(Component):


    total = Float(iotype='out', desc='sum of all f values')

    def __init__(self, size):
        super(summer, self).__init__()
        self.size = size

        self.add('fs', Array(np.zeros(size), iotype='in', desc='f values from all cases'))

    def execute(self):
        self.total = sum(self.fs)
        print 'In summer, fs = %s and total = %s' % (self.fs, self.total)

    def list_deriv_vars(self):
        return ('fs',), ('total',)

    def provideJ(self):
        J = np.ones((1.0, len(self.fs)))
        return J

class fakefake(Component):

    out = Float(0.0, iotype='out')

    def __init__(self, size):
        super(fakefake, self).__init__()

        self.size = size
        self.add('q', Array(np.zeros(size), iotype='in', dtype='float'))

    def execute(self):
        pass

    def list_deriv_vars(self):
        return ('q',), ('out',)

    def provideJ(self):
        J = np.zeros((1.0, 2.0*len(self.q)))
        return J

class assembly(Assembly):

    x = Float(iotype='in')
    y = Float(iotype='in')
    total = Float(iotype='out')

    def __init__(self, size):

        super(assembly, self).__init__()

        self.size = size

        self.add('a_vals', Array(np.zeros(size), iotype='in', dtype='float'))
        self.add('q', Array(np.zeros((size, 2)), iotype='in', dtype='float'))
        self.add('fs', Array(np.zeros(size), iotype='out', dtype='float'))

        print 'in init a_vals = %s, fs = %s' % (self.a_vals, self.fs)


    def configure(self):

        self.add('driver', SLSQPdriver())
        # self.add('driver', pyOptDriver())
        # self.driver.optimizer = 'SNOPT'
        # self.driver.pyopt_diff = True

        #create this first, so we can connect to it
        self.add('summer', summer(size=len(self.a_vals)))
        self.connect('summer.total', 'total')

        # Trying something...
        self.add('fakefake', fakefake(self.size))
        self.connect('q', 'fakefake.q')

        print 'in configure a_vals = %s' % self.a_vals

        # create instances of components

        for i in range(0, self.size):
            c1 = self.add('comp1_%d' % i, component1())
            c1.missing_deriv_policy = 'assume_zero'

            c2 = self.add('comp2_%d'%i, component2())
            self.connect('a_vals[%d]' % i, 'comp1_%d.a' % i)
            self.connect('x', ['comp1_%d.x' % i, 'comp2_%d.x' % i])
            self.connect('y', ['comp1_%d.y' % i, 'comp2_%d.y' % i])
            self.connect('comp1_%d.term1' % i, 'comp2_%d.term1' % i)
            #self.connect('q[%d, :]' % i, 'comp2_%d.q' % i)
            #self.connect('q[%d]' % i, 'comp2_%d.q' % i)
            self.connect('comp2_%d.f' % i, 'summer.fs[%d]' % i)

            self.driver.workflow.add(['comp1_%d' % i, 'comp2_%d' % i])

        # self.connect('summer.fs[:]', 'fs[:]')
        self.driver.workflow.add(['summer'])

        # set up main driver (optimizer)
        self.driver.iprint = 1
        self.driver.maxiter = 100
        self.driver.accuracy = 1.0e-6
        self.driver.add_parameter('x', low=-5., high=5.)
        self.driver.add_parameter('y', low=-5., high=5.)
        self.driver.add_parameter('q', low=0., high=5.)
        #for i in range(0, self.size):
        #    self.driver.add_parameter('comp2_%d.q' % i, low=0., high=5.)
        self.driver.add_objective('summer.total')
        self.driver.add_constraint('fakefake.out < 1000')


if __name__ == "__main__":
    """ the result should be -1 at (x, y) = (-0.5, 0) """

    import time
    from openmdao.main.api import set_as_top
    a_vals = np.array([1., 1., 1., 1.])
    test = set_as_top(assembly(size=len(a_vals)))
    test.a_vals = a_vals
    print 'in main, test.a_vals = %s, test.fs = %s' % (test.a_vals, test.fs)
    test.x = 2.
    test.y = -5
    test.q = np.tile(np.arange(0., 2.), (4, 1))
    print test.q

    tt = time.time()
    test.run()

    print "Elapsed time: ", time.time()-tt, "seconds"

    print 'result = ', test.summer.total
    print '(x, y) = (%s, %s)' % (test.x, test.y)
    print 'fs = %s' % test.fs
    print test.fs