我试图理解这个位反转算法。我找到了很多来源,但它并没有真正解释伪代码是如何工作的。例如,我在http://www.briangough.com/fftalgorithms.pdf
下面找到了伪代码for i = 0 ... n − 2 do
k = n/2
if i < j then
swap g(i) and g(j)
end if
while k ≤ j do
j ⇐ j − k
k ⇐ k/2
end while
j ⇐ j + k
end for
从查看这个伪代码,我不明白你为什么会这样做
swap g(i) and g(j)
if
语句为true
。
另外:while
循环有什么作用?如果有人能向我解释这个伪代码会很棒。
下面是我在网上找到的c ++代码。
void four1(double data[], int nn, int isign)
{
int n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
double tempr, tempi;
n = nn << 1;
j = 1;
for (i = 1; i < n; i += 2) {
if (j > i) {
tempr = data[j]; data[j] = data[i]; data[i] = tempr;
tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;
}
m = n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;
}
j += m;
}
以下是我发现的FFT代码的完整版本
/************************************************
* FFT code from the book Numerical Recipes in C *
* Visit www.nr.com for the licence. *
************************************************/
// The following line must be defined before including math.h to correctly define M_PI
#define _USE_MATH_DEFINES
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define PI M_PI /* pi to machine precision, defined in math.h */
#define TWOPI (2.0*PI)
/*
FFT/IFFT routine. (see pages 507-508 of Numerical Recipes in C)
Inputs:
data[] : array of complex* data points of size 2*NFFT+1.
data[0] is unused,
* the n'th complex number x(n), for 0 <= n <= length(x)-1, is stored as:
data[2*n+1] = real(x(n))
data[2*n+2] = imag(x(n))
if length(Nx) < NFFT, the remainder of the array must be padded with zeros
nn : FFT order NFFT. This MUST be a power of 2 and >= length(x).
isign: if set to 1,
computes the forward FFT
if set to -1,
computes Inverse FFT - in this case the output values have
to be manually normalized by multiplying with 1/NFFT.
Outputs:
data[] : The FFT or IFFT results are stored in data, overwriting the input.
*/
void four1(double data[], int nn, int isign)
{
int n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
double tempr, tempi;
n = nn << 1;
j = 1;
for (i = 1; i < n; i += 2) {
if (j > i) {
//swap the real part
tempr = data[j]; data[j] = data[i]; data[i] = tempr;
//swap the complex part
tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;
}
m = n >> 1;
while (m >= 2 && j > m) {
j -= m;
m >>= 1;
}
j += m;
}
mmax = 2;
while (n > mmax) {
istep = 2*mmax;
theta = TWOPI/(isign*mmax);
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for (m = 1; m < mmax; m += 2) {
for (i = m; i <= n; i += istep) {
j =i + mmax;
tempr = wr*data[j] - wi*data[j+1];
tempi = wr*data[j+1] + wi*data[j];
data[j] = data[i] - tempr;
data[j+1] = data[i+1] - tempi;
data[i] += tempr;
data[i+1] += tempi;
}
wr = (wtemp = wr)*wpr - wi*wpi + wr;
wi = wi*wpr + wtemp*wpi + wi;
}
mmax = istep;
}
}
/********************************************************
* The following is a test routine that generates a ramp *
* with 10 elements, finds their FFT, and then finds the *
* original sequence using inverse FFT *
********************************************************/
int main(int argc, char * argv[])
{
int i;
int Nx;
int NFFT;
double *x;
double *X;
/* generate a ramp with 10 numbers */
Nx = 10;
printf("Nx = %d\n", Nx);
x = (double *) malloc(Nx * sizeof(double));
for(i=0; i<Nx; i++)
{
x[i] = i;
}
/* calculate NFFT as the next higher power of 2 >= Nx */
NFFT = (int)pow(2.0, ceil(log((double)Nx)/log(2.0)));
printf("NFFT = %d\n", NFFT);
/* allocate memory for NFFT complex numbers (note the +1) */
X = (double *) malloc((2*NFFT+1) * sizeof(double));
/* Storing x(n) in a complex array to make it work with four1.
This is needed even though x(n) is purely real in this case. */
for(i=0; i<Nx; i++)
{
X[2*i+1] = x[i];
X[2*i+2] = 0.0;
}
/* pad the remainder of the array with zeros (0 + 0 j) */
for(i=Nx; i<NFFT; i++)
{
X[2*i+1] = 0.0;
X[2*i+2] = 0.0;
}
printf("\nInput complex sequence (padded to next highest power of 2):\n");
for(i=0; i<NFFT; i++)
{
printf("x[%d] = (%.2f + j %.2f)\n", i, X[2*i+1], X[2*i+2]);
}
/* calculate FFT */
four1(X, NFFT, 1);
printf("\nFFT:\n");
for(i=0; i<NFFT; i++)
{
printf("X[%d] = (%.2f + j %.2f)\n", i, X[2*i+1], X[2*i+2]);
}
/* calculate IFFT */
four1(X, NFFT, -1);
/* normalize the IFFT */
for(i=0; i<NFFT; i++)
{
X[2*i+1] /= NFFT;
X[2*i+2] /= NFFT;
}
printf("\nComplex sequence reconstructed by IFFT:\n");
for(i=0; i<NFFT; i++)
{
printf("x[%d] = (%.2f + j %.2f)\n", i, X[2*i+1], X[2*i+2]);
}
getchar();
}
/*
Nx = 10
NFFT = 16
Input complex sequence (padded to next highest power of 2):
x[0] = (0.00 + j 0.00)
x[1] = (1.00 + j 0.00)
x[2] = (2.00 + j 0.00)
x[3] = (3.00 + j 0.00)
x[4] = (4.00 + j 0.00)
x[5] = (5.00 + j 0.00)
x[6] = (6.00 + j 0.00)
x[7] = (7.00 + j 0.00)
x[8] = (8.00 + j 0.00)
x[9] = (9.00 + j 0.00)
x[10] = (0.00 + j 0.00)
x[11] = (0.00 + j 0.00)
x[12] = (0.00 + j 0.00)
x[13] = (0.00 + j 0.00)
x[14] = (0.00 + j 0.00)
x[15] = (0.00 + j 0.00)
FFT:
X[0] = (45.00 + j 0.00)
X[1] = (-25.45 + j 16.67)
X[2] = (10.36 + j -3.29)
X[3] = (-9.06 + j -2.33)
X[4] = (4.00 + j 5.00)
X[5] = (-1.28 + j -5.64)
X[6] = (-2.36 + j 4.71)
X[7] = (3.80 + j -2.65)
X[8] = (-5.00 + j 0.00)
X[9] = (3.80 + j 2.65)
X[10] = (-2.36 + j -4.71)
X[11] = (-1.28 + j 5.64)
X[12] = (4.00 + j -5.00)
X[13] = (-9.06 + j 2.33)
X[14] = (10.36 + j 3.29)
X[15] = (-25.45 + j -16.67)
Complex sequence reconstructed by IFFT:
x[0] = (0.00 + j -0.00)
x[1] = (1.00 + j -0.00)
x[2] = (2.00 + j 0.00)
x[3] = (3.00 + j -0.00)
x[4] = (4.00 + j -0.00)
x[5] = (5.00 + j 0.00)
x[6] = (6.00 + j -0.00)
x[7] = (7.00 + j -0.00)
x[8] = (8.00 + j 0.00)
x[9] = (9.00 + j 0.00)
x[10] = (0.00 + j -0.00)
x[11] = (0.00 + j -0.00)
x[12] = (0.00 + j 0.00)
x[13] = (-0.00 + j -0.00)
x[14] = (0.00 + j 0.00)
x[15] = (0.00 + j 0.00)
*/
答案 0 :(得分:1)
位反转算法通过反转每个项的二进制地址来创建数据集的排列;所以例如在一个16项中设置地址:
0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
将改为:
1000 0100 1100 0010 1010 0110 1110 0001 1001 0101 1101 0011 1011 0111 1111
然后将相应的项目移动到新地址。
或以十进制表示法:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
成为
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
伪代码中的while循环是什么,将变量j设置为此序列。 (顺便说一下,j的初始值应为0)。
您会看到序列组成如下:
0
0 1
0 2 1 3
0 4 2 6 1 5 3 7
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
通过将先前版本乘以2来生成每个序列,然后在添加1的情况下重复它。或者以另一种方式看待它:通过重复前一个序列,与值+ n / 2隔行扫描(这更接近地描述了算法中发生的情况)。
0
0 1
0 2 1 3
0 4 2 6 1 5 3 7
0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
然后在for循环的每次迭代中交换项目i和j,但仅当i&lt;焦耳;否则每个项目都将被交换到新的位置(例如,当i = 3且j = 12时),然后再返回(当i = 12且j = 3时)。
function bitReversal(data) {
var n = data.length;
var j = 0;
for (i = 0; i < n - 1; i++) {
var k = n / 2;
if (i < j) {
var temp = data[i]; data[i] = data[j]; data[j] = temp;
}
while (k <= j) {
j -= k;
k /= 2;
}
j += k;
}
return(data);
}
console.log(bitReversal([0,1]));
console.log(bitReversal([0,1,2,3]));
console.log(bitReversal([0,1,2,3,4,5,6,7]));
console.log(bitReversal([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]));
console.log(bitReversal(["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p"]));
&#13;
您找到的C ++代码似乎使用序列的对称性以两步的方式遍历它。但它并没有产生正确的结果,所以要么是尝试失败,要么是它设计成完全不同的东西。这是一个使用两步理念的版本:
function bitReversal2(data) {
var n = data.length;
var j = 0;
for (i = 0; i < n; i += 2) {
if (i < j) {
var temp = data[i]; data[i] = data[j]; data[j] = temp;
}
else {
var temp = data[n-1 - i]; data[n-1 - i] = data[n-1 - j]; data[n-1 - j] = temp;
}
var k = n / 4;
while (k <= j) {
j -= k;
k /= 2;
}
j += k;
}
return(data);
}
console.log(bitReversal2([0,1]));
console.log(bitReversal2([0,1,2,3]));
console.log(bitReversal2([0,1,2,3,4,5,6,7]));
console.log(bitReversal2([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]));
console.log(bitReversal2(["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p"]));
&#13;
答案 1 :(得分:0)
首先,感谢大家帮忙回答我的问题。我正在和帮助我的人交谈,我想我现在理解我的C ++代码了。也许我的问题有点不清楚,但我想要做的是使用C ++实现FFT。我在问题中给出的C ++代码只是我在网上找到的FFT源代码的前半部分。本质上,这部分C ++代码将输入分类为实数和虚数,将实数存储到奇数索引中,将虚数存储到偶数索引中。 (real_0,imag_0,real_1,imag_1,real_2,imag_2,.....)索引从1开始,因为我们不需要交换第零索引。
下面的交换操作是交换实数和虚数。
tempr = data[j]; data[j] = data[i]; data[i] = tempr;
tempr = data[j+1]; data[j+1] = data[i+1]; data[i+1] = tempr;
例如,我们的数组长度为8(nn = 8),然后是2 * nn = 16,我们将输入分为实数和图像数,并将其存储到16的数组中。所以第一次去通过C ++代码的for
循环,我的j=1
,i=1
,它将跳过if
和while
语句,现在在第二个for循环中, j=9
,i=3
,所以if语句为true,数据[9],数据[3]将被交换,数据[9 + 1]和数据[3 + 1]将被交换。由于索引3和4具有第一个输入的实数和图像数,而索引9和10具有第四个的实数和图像数,因此执行位反转数。
结果,001 = 1(第一次输入)
100 = 4 (fourth input)
交换,因此,这是使用索引进行位反转。
我还没有真正了解while循环,但我从@ m69知道,它只是一种设置序列的方式,因此它可以进行位反转。对我有同样问题的人来说,对我自己的问题的解释很有帮助。再一次,谢谢大家。