我正在编写此代码来设置opengl投影矩阵,但我得到了奇怪的结果,并希望得到一些帮助。
void mat4Projection(mat4* out, double r, double l, double t, double b, double n, double f);
void mat4OrthoProjection(mat4* out, double r, double l, double t, double b, double n, double f);
void mat4Projection(mat4* out, double r, double l, double t, double b, double n, double f)
{
double data[] = { (2*n)/(r-l), 0, (r+l)/(r-l), 0,
0, (2*n)/(t-b), (t+b)/(t-b), 0,
0, 0, (-(f+n))/(f-n), (-2*(f*n))/(f-n),
0, 0, -1, 1 };
copyMatrix(out, data);
}
void mat4OrthoProjection(mat4* out, double r, double l, double t, double b, double n, double f)
{
double data[] = { (2)/(r-l), 0, 0, -((r+l)/(r-l)),
0, (2)/(t-b), 0, -((t+b)/(t-b)),
0, 0, (-2)/(f-n), -((f+n)/(f-n)),
0, 0, 0, 1 };
copyMatrix(out, data);
}
获取此代码
答案 0 :(得分:1)
与我的比较。这是一个标准的代码并且运行良好,但您应该知道的一件事是基于行向量。
void Matrix_OrthoProjection( Matrix& out_M, const __VERTEX__TYPE__ width, const __VERTEX__TYPE__ height, const __VERTEX__TYPE__ nZ, const __VERTEX__TYPE__ fZ)
{
// asumed r-l = width , t-b = height
out_M.s[_0x0_] = 2./width; out_M.s[_0x1_] = 0; out_M.s[_0x2_] = 0; out_M.s[_0x3_] = 0;
out_M.s[_1x0_] = 0; out_M.s[_1x1_] = 2./height; out_M.s[_1x2_] = 0; out_M.s[_1x3_] = 0;
out_M.s[_2x0_] = 0; out_M.s[_2x1_] = 0; out_M.s[_2x2_] = -2./(fZ-nZ); out_M.s[_2x3_] = 0;
out_M.s[_3x0_] = 0; out_M.s[_3x1_] = 0; out_M.s[_3x2_] = -(fZ+nZ)/(fZ-nZ); out_M.s[_3x3_] = 1.;
}
void Matrix_PerspectiveProjection
(Matrix& out_M,
const __VERTEX__TYPE__ FOV,
const __VERTEX__TYPE__ ASPECT,
const __VERTEX__TYPE__ NEAR,
const __VERTEX__TYPE__ FAR)
{
float fov = 1.0f / (float)tan(FOV * 0.5f);
float nf = 1.0f / (NEAR - FAR);
out_M.s[_0x0_] = fov/ASPECT;
out_M.s[_1x0_] = 0;
out_M.s[_2x0_] = 0;
out_M.s[_3x0_] = 0;
out_M.s[_0x1_] = 0.0;
out_M.s[_1x1_] = fov;
out_M.s[_2x1_] = 0.0;
out_M.s[_3x1_] = 0.0;
out_M.s[_0x2_] = 0.0;
out_M.s[_1x2_] = 0.0;
out_M.s[_2x2_] = (NEAR+FAR) * nf;
out_M.s[_3x2_] = (2.f*NEAR*FAR) * nf;
out_M.s[_0x3_] = 0.0;
out_M.s[_1x3_] = 0.0;
out_M.s[_2x3_] = -1.0;
out_M.s[_3x3_] = 0.0;
}
也请参阅此图片。