假设以下矩阵在矩阵卷积运算中充当图像和内核:
0 1 2
3 4 5
6 7 8
要计算邻居像素索引,您可以使用以下公式:
neighbourColumn = imageColumn + (maskColumn - centerMaskColumn);
neighbourRow = imageRow + (maskRow - centerMaskRow);
因此卷积的输出将是:
output1 = {0,1,3,4} x {4,5,7,8} = 58
output2 = {0,1,2,3,4,5} x {3,4,5,6,7,8} = 100
output2 = {1,2,4,5} x {3,4,6,7} = 70
output3 = {0,1,3,4,6,7} x {1,2,4,5,7,8} = 132
output4 = {0,1,2,3,4,5,6,7,8} x {0,1,2,3,4,5,6,7,8} = 204
output5 = {1,2,4,5,7,8} x {0,1,3,4,6,7} = 132
output6 = {3,4,6,7} x {1,2,4,5} = 70
output7 = {3,4,5,6,7,8} x {0,1,2,3,4,5} = 100
output8 = {4,5,7,8} x {0,1,3,4} = 58
因此输出矩阵将是:
58 100 70
132 204 132
70 100 58
现在假设矩阵被展平以提供以下向量:
0 1 2 3 4 5 6 7 8
此向量现在充当矢量卷积运算中的图像和内核,其输出应为:
58 100 70 132 204 132 70 100 58
根据下面的代码,您如何计算向量的邻居元素索引,使其与矩阵中的相同邻居元素相对应?
public int[] convolve(int[] image, int[] kernel)
{
int imageValue;
int kernelValue;
int outputValue;
int[] outputImage = new int[image.length()];
// loop through image
for(int i = 0; i < image.length(); i++)
{
outputValue = 0;
// loop through kernel
for(int j = 0; j < kernel.length(); j++)
{
neighbour = ?;
// discard out of bound neighbours
if (neighbour >= 0 && neighbour < imageSize)
{
imageValue = image[neighbour];
kernelValue = kernel[j];
outputValue += imageValue * kernelValue;
}
}
outputImage[i] = outputValue;
}
return output;
}
答案 0 :(得分:1)
通过将原始像素索引偏移当前元素的索引与矩阵大小的一半之间的差来计算邻居索引。例如,要计算列索引:
int neighbourCol = imageCol + col - (size / 2);
我放了一个工作演示on GitHub,试图让整个卷积算法尽可能可读:
int[] dstImage = new int[srcImage.width() * srcImage.height()];
srcImage.forEachElement((image, imageCol, imageRow) -> {
Pixel pixel = new Pixel();
forEachElement((filter, col, row) -> {
int neighbourCol = imageCol + col - (size / 2);
int neighbourRow = imageRow + row - (size / 2);
if (srcImage.hasElementAt(neighbourCol, neighbourRow)) {
int color = srcImage.at(neighbourCol, neighbourRow);
int weight = filter.at(col, row);
pixel.addWeightedColor(color, weight);
}
});
dstImage[(imageRow * srcImage.width() + imageCol)] = pixel.rgb();
});
答案 1 :(得分:0)
在处理2D图像时,除了普通的1D像素阵列外,还必须保留一些有关图像的信息。特别是,您至少需要图像(和掩码)的 width ,以便找出1D数组中哪些索引对应于原始2D图像中的哪些索引。正如Raffaele in his answer已经指出的那样,在这样的像素阵列中,这些(“虚拟”)2D坐标和1D坐标之间的转换有一般规则:
int pixelX = ...;
int pixelY = ...;
int index = pixelX + pixelY * imageSizeX;
基于此,您可以简单地在2D图像上进行卷积。可以轻松检查您可以访问的像素限制。循环是图像和蒙版上的简单2D循环。如上所述,这一切都归结为您使用2D坐标访问1D数据。
这是一个例子。它将Sobel滤波器应用于输入图像。 (像素值可能仍然有些奇怪,但卷积本身和索引计算应该是正确的)
import java.awt.Graphics2D;
import java.awt.GridLayout;
import java.awt.image.BufferedImage;
import java.awt.image.DataBuffer;
import java.awt.image.DataBufferByte;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.SwingUtilities;
public class ConvolutionWithArrays1D
{
public static void main(String[] args) throws IOException
{
final BufferedImage image =
asGrayscaleImage(ImageIO.read(new File("lena512color.png")));
SwingUtilities.invokeLater(new Runnable()
{
@Override
public void run()
{
createAndShowGUI(image);
}
});
}
private static void createAndShowGUI(BufferedImage image0)
{
JFrame f = new JFrame();
f.getContentPane().setLayout(new GridLayout(1,2));
f.getContentPane().add(new JLabel(new ImageIcon(image0)));
BufferedImage image1 = compute(image0);
f.getContentPane().add(new JLabel(new ImageIcon(image1)));
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
}
private static BufferedImage asGrayscaleImage(BufferedImage image)
{
BufferedImage gray = new BufferedImage(
image.getWidth(), image.getHeight(), BufferedImage.TYPE_BYTE_GRAY);
Graphics2D g = gray.createGraphics();
g.drawImage(image, 0, 0, null);
g.dispose();
return gray;
}
private static int[] obtainGrayscaleIntArray(BufferedImage image)
{
BufferedImage gray = new BufferedImage(
image.getWidth(), image.getHeight(), BufferedImage.TYPE_BYTE_GRAY);
Graphics2D g = gray.createGraphics();
g.drawImage(image, 0, 0, null);
g.dispose();
DataBuffer dataBuffer = gray.getRaster().getDataBuffer();
DataBufferByte dataBufferByte = (DataBufferByte)dataBuffer;
byte data[] = dataBufferByte.getData();
int result[] = new int[data.length];
for (int i=0; i<data.length; i++)
{
result[i] = data[i];
}
return result;
}
private static BufferedImage createImageFromGrayscaleIntArray(
int array[], int imageSizeX, int imageSizeY)
{
BufferedImage gray = new BufferedImage(
imageSizeX, imageSizeY, BufferedImage.TYPE_BYTE_GRAY);
DataBuffer dataBuffer = gray.getRaster().getDataBuffer();
DataBufferByte dataBufferByte = (DataBufferByte)dataBuffer;
byte data[] = dataBufferByte.getData();
for (int i=0; i<data.length; i++)
{
data[i] = (byte)array[i];
}
return gray;
}
private static BufferedImage compute(BufferedImage image)
{
int imagePixels[] = obtainGrayscaleIntArray(image);
int mask[] =
{
1,0,-1,
2,0,-2,
1,0,-1,
};
int outputPixels[] =
Convolution.filter(imagePixels, image.getWidth(), mask, 3);
return createImageFromGrayscaleIntArray(
outputPixels, image.getWidth(), image.getHeight());
}
}
class Convolution
{
public static final int[] filter(
final int[] image, int imageSizeX,
final int[] mask, int maskSizeX)
{
int imageSizeY = image.length / imageSizeX;
int maskSizeY = mask.length / maskSizeX;
int output[] = new int[image.length];
for (int y=0; y<imageSizeY; y++)
{
for (int x=0; x<imageSizeX; x++)
{
int outputPixelValue = 0;
for (int my=0; my< maskSizeY; my++)
{
for (int mx=0; mx< maskSizeX; mx++)
{
int neighborX = x + mx -maskSizeX / 2;
int neighborY = y + my -maskSizeY / 2;
if (neighborX >= 0 && neighborX < imageSizeX &&
neighborY >= 0 && neighborY < imageSizeY)
{
int imageIndex =
neighborX + neighborY * imageSizeX;
int maskIndex = mx + my * maskSizeX;
int imagePixelValue = image[imageIndex];
int maskPixelValue = mask[maskIndex];
outputPixelValue +=
imagePixelValue * maskPixelValue;
}
}
}
outputPixelValue = truncate(outputPixelValue);
int outputIndex = x + y * imageSizeX;
output[outputIndex] = outputPixelValue;
}
}
return output;
}
private static final int truncate(final int pixelValue)
{
return Math.min(255, Math.max(0, pixelValue));
}
}