下面的代码我是按照Median of two sorted arrays (method - 2)
的逻辑编写的您甚至可以在Ideone.com
看到代码class MedianOfTwoArrays {
public static void main(String[] args) {
// Note: These are sorted arrays and are of equal length.
int[] array1 = {1, 12, 15, 26, 38};
int[] array2 = {2, 13, 17, 30, 45};
int median = getMedianOfTwoArrays(array1, array2);
System.out.println(median);
}
static int getMedianOfTwoArrays(int[] array1, int[] array2) {
int index1 = array1.length/2;
int index2 = array2.length/2;
int m1 = array1[index1];
int m2 = array2[index2];
if(m1 == m2) {
return m1;
} else {
return findMedian(array1, array2, 0, array1.length - 1, 0, array2.length - 1);
}
}
static int findMedian(int[] array1,
int[] array2,
int low1,
int high1,
int low2,
int high2) {
if((high1 - low1 + 1) == 2 && (high2 - low2 + 1) == 2) {
return (Math.max(array1[low1], array2[low2]) + Math.min(array1[high1], array2[high2]))/2;
}
int mid1 = (low1 + high1)/2;
int mid2 = (low2 + high2)/2;
int m1 = array1[mid1];
int m2 = array2[mid2];
int low1_t = 0;
int high1_t = 0;
int low2_t = 0;
int high2_t = 0;
if(m1 == m2) {
return m1;
} else if(m1 > m2) {
low1_t = low1;
high1_t = mid1;
low2_t = mid2;
high2_t = high2;
return findMedian(array1, array2, low1_t, high1_t, low2_t, high2_t);
} else {
low1_t = mid1;
high1_t = high1;
low2_t = low2;
high2_t = mid2;
return findMedian(array1, array2, low1_t, high1_t, low2_t, high2_t);
}
}
}
它不适用于像
这样的输入数组int[] array1 = {1, 5, 17, 20}; // median is 10
int[] array2 = {4, 8, 13, 19};
int[] array1 = {1, 3, 5, 7, 9, 11}; // median is 6
int[] array2 = {2, 4, 6, 8, 10, 12};
根据我的分析,问题是终止条件。一些来自geeksforgeeks的逻辑似乎与终止条件有关。
(Math.max(array1[low1], array2[low2]) + Math.min(array1[high1], array2[high2]))/2;
但是我无法解决它并使其适用于上述输入。 有人可以调查这个问题,让我知道我在哪里弄错了吗?
答案 0 :(得分:3)
您的主要错误是当您执行int mid1 = (low1 + high1)/2;
mid1
时,mid1
总是向左移动,然后您分配2n
而不考虑此转换,因此每个嵌套比较比较从预期位置向左移位的数组元素,并且由于长度为a[n-1]+a[n]/2
的数组的中位数始终为 if (n % 2 == 0)
return getMedian(ar1 + n/2 - 1, ar2, n - n/2 +1);
else
return getMedian(ar1 + n/2, ar2, n - n/2);
,因此在第一次执行比较后,您将比较数组的错误元素。你似乎无法实现方法2的代码块:
assert (high2-low2==high1-low1)
实际上,findMedian()
入口处的简单low1_t
会提醒您逻辑错误,因为对于大小为4的数组,第二个入口会产生不相等的数组大小。退出条件非常好,因为它直接从方法2的代码中复制。因此,您需要将分配 assert (high2-low2==high1-low1); // sanity check
int n=high1-low1+1; // "n" from logic
int m1 = median(array1,low1,high1);
int m2 = median(array2,low2,high2);
int low1_t = low1;
int high1_t = high1;
int low2_t = low2;
int high2_t = high2;
if(m1 == m2) {
return m1;
} else if(m1 > m2) {
if (n % 2 == 0) {
high1_t = high1-n/2+1;
low2_t = low2+n/2-1;
} else {
high1_t = high1-n/2;
low2_t = low2+n/2;
}
} else {
if (n % 2 == 0) {
low1_t = low1+n/2-1;
high2_t = high2-n/2+1;
} else {
low1_t = low1+n/2;
high2_t = high2-n/2;
}
}
return findMedian(array1, array2, low1_t, high1_t, low2_t, high2_t);
和其他的块更改为以下内容:
median
并添加功能static int median(int[] arr, int low,int hig)
{
if ((low+hig)%2 == 0) return arr[(low+hig)/2];
int mid=(low+hig)/2;
return (arr[mid]+ arr[mid-1])/2;
}
,如下所示:
{{1}}
完整示例(根据需要更改数组):http://ideone.com/zY30Vg
答案 1 :(得分:0)
这是一个有效的代码,它可以解决您的问题: -
public static void main(String[] args)
{
int[] ar1 = {1, 3, 5, 7, 9, 11};
int[] ar2 = {2, 4, 6, 8, 10, 12};
System.out.println((int) findMedianSortedArrays(ar1,ar2));
}
public static double findMedianSortedArrays(int A[], int B[]) {
int m = A.length;
int n = B.length;
if ((m + n) % 2 != 0) // odd
return (double) findKth(A, B, (m + n) / 2, 0, m - 1, 0, n - 1);
else { // even
return (findKth(A, B, (m + n) / 2, 0, m - 1, 0, n - 1)
+ findKth(A, B, (m + n) / 2 - 1, 0, m - 1, 0, n - 1)) * 0.5;
}
}
public static int findKth(int A[], int B[], int k,
int aStart, int aEnd, int bStart, int bEnd) {
int aLen = aEnd - aStart + 1;
int bLen = bEnd - bStart + 1;
// Handle special cases
if (aLen == 0)
return B[bStart + k];
if (bLen == 0)
return A[aStart + k];
if (k == 0)
return A[aStart] < B[bStart] ? A[aStart] : B[bStart];
int aMid = aLen * k / (aLen + bLen); // a's middle count
int bMid = k - aMid - 1; // b's middle count
// make aMid and bMid to be array index
aMid = aMid + aStart;
bMid = bMid + bStart;
if (A[aMid] > B[bMid]) {
k = k - (bMid - bStart + 1);
aEnd = aMid;
bStart = bMid + 1;
} else {
k = k - (aMid - aStart + 1);
bEnd = bMid;
aStart = aMid + 1;
}
return findKth(A, B, k, aStart, aEnd, bStart, bEnd);
}