我有一个从DataFrame构建的散点图 - 它显示了两个变量的相关性 - 长度和年龄
import matplotlib.pyplot as plt
df = DataFrame (......)
plt.title ('Fish Length vs Age')
plt.xlabel('Length')
plt.ylabel('Age (days)')
plt.scatter(df['length'],df['age'])
现在我想在此散点图中添加一条给定斜率 0.88 的线。我该怎么做?
P.S。所有的例子我都设法找到了使用点而不是斜率来画线
更新即可。我重读了这个理论 - 事实证明相关系数应该与数据点相对应的事实由我组成:)部分是因为我头脑中的这个图像
然而,我仍然对matplotlib
的线条绘图功能感到困惑答案 0 :(得分:6)
在@ JinxunLi的回答基础上,您只想添加一条连接两点的线。
这两个点有x和y坐标,因此对于这两个点,您将有四个数字:x_0
,y_0
,x_1
,y_1
。
假设您希望这两个点的x坐标跨越x轴,那么您将手动设置x_0
和x_1
:
x_0 = 0
x_1 = 5000
或者,您可以从轴中获取最小值和最大值:
x_min, x_max = ax.get_xlim()
x_0 = x_min
x_1 = x_max
您可以将行的斜率定义为increase in y / increase in x
:
slope = (y_1 - y_0) / (x_1 - x_0)
这可以重新安排到:
(y_1 - y_0) = slope * (x_1 - x_0)
这个斜率有无数个平行线,所以我们必须设置其中一个点开始。对于此示例,我们假设您希望该行通过原点(0,0)
x_0 = 0 # We already know this as it was set earlier
y_0 = 0
现在,您可以将y_1
的公式重新排列为:
y_1 = slope * (x_1 - x_0) + y_0
如果您知道您希望斜率为0.88,那么您可以计算另一个点的y位置:
y_1 = 0.88 * (5000 - 0) + 0
对于您在问题中提供的数据,斜率为0.88的线将非常快速地飞离y轴的顶部(在上例中为y_1 = 4400
)。
在下面的示例中,我输入了一条斜率= 0.03的行。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# simulate some artificial data
# =====================================
df = pd.DataFrame( { 'Age' : np.random.rand(25) * 160 } )
df['Length'] = df['Age'] * 0.88 + np.random.rand(25) * 5000
# plot those data points
# ==============================
fig, ax = plt.subplots()
ax.scatter(df['Length'], df['Age'])
# Now add on a line with a fixed slope of 0.03
slope = 0.03
# A line with a fixed slope can intercept the axis
# anywhere so we're going to have it go through 0,0
x_0 = 0
y_0 = 0
# And we'll have the line stop at x = 5000
x_1 = 5000
y_1 = slope (x_1 - x_0) + y_0
# Draw these two points with big triangles to make it clear
# where they lie
ax.scatter([x_0, x_1], [y_0, y_1], marker='^', s=150, c='r')
# And now connect them
ax.plot([x_0, x_1], [y_0, y_1], c='r')
plt.show()
答案 1 :(得分:5)
相关系数不会给出回归线的斜率,因为您的数据处于不同的比例。如果您想使用回归线绘制散点图,我建议您使用最少的代码行在seaborn
中进行绘制。
安装seaborn
,
pip install seaborn
代码示例:
import numpy as np
import pandas as pd
import seaborn as sns
# simulate some artificial data
# =====================================
df = pd.DataFrame(np.random.multivariate_normal([10, 100], [[100, 800], [800, 10000]], size=100), columns=['X', 'Y'])
df
# plot
# ====================================
sns.set_style('ticks')
sns.regplot(df.X, df.Y, ci=None)
sns.despine()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# simulate some artificial data
# =====================================
df = pd.DataFrame(np.random.multivariate_normal([10, 100], [[100, 800], [800, 10000]], size=100), columns=['X', 'Y'])
# plot
# ==============================
fig, ax = plt.subplots()
ax.scatter(df.X, df.Y)
# need a slope and c to fix the position of line
slope = 10
c = -100
x_min, x_max = ax.get_xlim()
y_min, y_max = c, c + slope*(x_max-x_min)
ax.plot([x_min, x_max], [y_min, y_max])
ax.set_xlim([x_min, x_max])