嗨,假设您有128位自动机(由四个32位字X
,Y
,Z
,W
表示),可以改变它的状态根据以下规则:
X = ...
Y = ...
Z = ...
W = ...
void next()
{
var t = X ^ (X << 11);
X = Y;
Y = Z;
Z = W;
W = W ^ (W >> 19) ^ (t ^ (t >> 8));
}
^
- 表示二进制XOR
操作
<<
- 表示二进制左移操作
>>
- 包含二进制右移操作
保证上述自动机不产生冲突,即每个状态是一个(且仅一个)先前状态的结果。还保证上述状态机产生2 ^ 128个唯一状态。
对于任何给定状态(X,Y,Z,W)
产生与next
相反的(即prev
)操作,该状态会将状态恢复为前一状态。
换句话说,如果您有以下状态(X=1, Y=2, Z=3, W=4)
并且会调用next
,状态将更改为(X=2, Y=3, Z=4, W=2061)
,假设在调用prev
之后状态应该再次等于(X=1, Y=2, Z=3, W=4)
。
next
操作是George Marsaglia发现的XorShift伪随机数生成器的实现之一
https://en.wikipedia.org/wiki/Xorshift
此操作的反向通常非常有用,请考虑Guid.Next(...),Guid.Prev(...)可用性的含义
我有点改进了Niklas B.原来的答案并将结果移植到了C#,所以这里是最后一段代码,希望有人能从Random.Next()和Random.Prev中受益( )操作:
public class Xor128
{
public UInt32 X { get; set; }
public UInt32 Y { get; set; }
public UInt32 Z { get; set; }
public UInt32 W { get; set; }
public Xor128()
{
}
public Xor128(UInt32 x, UInt32 y, UInt32 z, UInt32 w)
{
X = x;
Y = y;
Z = z;
W = w;
}
//private UInt32 UnXorShl(UInt32 x, Int32 shift)
//{
// for (var i = shift; i < 32; i <<= 1) {
// x ^= x << i;
// }
// return x;
//}
//private UInt32 UnXorShr(UInt32 x, Int32 shift)
//{
// for (var i = shift; i < 32; i <<= 1) {
// x ^= x >> i;
// }
// return x;
//}
//public UInt32 Prev()
//{
// var t = UnXorShr(W ^ Z ^ (Z >> 19), 8);
// W = Z;
// Z = Y;
// Y = X;
// X = UnXorShl(t, 11);
// return W;
//}
public UInt32 Prev()
{
var t = W ^ Z ^ (Z >> 19);
t ^= t >> 8;
t ^= t >> 16;
W = Z;
Z = Y;
Y = X;
t ^= t << 11;
t ^= t << 22;
X = t;
return W;
}
public UInt32 Curr()
{
return W;
}
public UInt32 Next()
{
UInt32 t = X ^ (X << 11);
X = Y;
Y = Z;
Z = W;
return W = W ^ (W >> 19) ^ (t ^ (t >> 8));
}
}
顺便说一句。这是一个快速版本:
public class Xor128 {
public var X: UInt32
public var Y: UInt32
public var Z: UInt32
public var W: UInt32
public convenience init(uuid: uuid_t) {
let xa = (UInt32(uuid.0 ) << 24)
let xb = (UInt32(uuid.1 ) << 16)
let xc = (UInt32(uuid.2 ) << 8 )
let xd = (UInt32(uuid.3 ) << 0 )
let ya = (UInt32(uuid.4 ) << 24)
let yb = (UInt32(uuid.5 ) << 16)
let yc = (UInt32(uuid.6 ) << 8 )
let yd = (UInt32(uuid.7 ) << 0 )
let za = (UInt32(uuid.8 ) << 24)
let zb = (UInt32(uuid.9 ) << 16)
let zc = (UInt32(uuid.10) << 8 )
let zd = (UInt32(uuid.11) << 0 )
let wa = (UInt32(uuid.12) << 24)
let wb = (UInt32(uuid.13) << 16)
let wc = (UInt32(uuid.14) << 8 )
let wd = (UInt32(uuid.15) << 0)
self.init(
x: xa + xb + xc + xd,
y: ya + yb + yc + yd,
z: za + zb + zc + zd,
w: wa + wb + wc + wd
)
}
public convenience init(uuid: UUID) {
self.init(uuid: uuid.uuid)
}
public init(x: UInt32, y: UInt32, z: uint32, w: UInt32) {
X = x
Y = y
Z = z
W = w
}
@discardableResult
public func next() -> UInt32 {
let t = X ^ (X << 11);
X = Y;
Y = Z;
Z = W;
W = W ^ (W >> 19) ^ (t ^ (t >> 8))
return W;
}
public var curr: UInt32 {
return W
}
@discardableResult
public func prev() -> UInt32 {
var t = W ^ Z ^ (Z >> 19);
t ^= t >> 8;
t ^= t >> 16;
W = Z;
Z = Y;
Y = X;
t ^= t << 11;
t ^= t << 22;
X = t;
return W;
}
}
答案 0 :(得分:7)
您需要的基本构建块是一种算法,可以通过左移操作f(x) = x ^ (x << s)
来反转XOR,而某些s&gt;给定f(x),你已经知道x的低s位。
您可以从低到高迭代地重建剩余的位,因为您已经知道每个点已被异或以得到f(x)的位。这是Python中的一个例子:
def reverse_xor_lshift(y, shift, w=32):
x = y & ((1<<shift) - 1)
for i in range(w - shift):
x |= (1 if bool(x & (1<<i)) ^ bool(y & (1<<(shift+i))) else 0)<<(shift+i)
return x
现在其余部分变得相当容易。请注意,我正在重新使用右移模拟的左移位反转:
def reverse_bin(x, w=32):
return int(bin(x)[2:].rjust(w, '0')[::-1], 2)
def reverse_xor_rshift(y, shift, w=32):
# for simplicity, we just reuse reverse_xor_lshift here
return reverse_bin(reverse_xor_lshift(reverse_bin(y), shift))
def forward(X, Y, Z, W):
t = (X ^ (X << 11)) & 0xffffffff
X = Y
Y = Z
Z = W
W = W ^ (W >> 19) ^ (t ^ (t >> 8))
return (X, Y, Z, W)
def backward(X, Y, Z, W):
t = reverse_xor_rshift(W ^ Z ^ (Z >> 19), 8)
return (reverse_xor_lshift(t, 11), X, Y, Z)
backward
是反转状态转换的函数。一些随机测试:
import random
for _ in range(1000):
X, Y, Z, W = [random.randint(0,2**32-1) for _ in range(4)]
assert backward(*forward(X,Y,Z,W)) == (X, Y, Z, W)
似乎工作。
答案 1 :(得分:3)
对于Y,Z和W,我们可以轻松扭转它。对于X,我们需要做一些观察:
W' = W ^ (W >> 19) ^ (t ^ (t >> 8)), -> t ^ (t >> 8) = W' ^ (W ^ (W >> 19))
所以,现在,我们有t ^ (t >> 8) = W' ^ (W ^ (W >> 19)) = a
t = X ^ (X << 11)
-> t ^ (t >> 8) = X ^ (X << 11) ^ ((X ^ (X <<11)) >> 8)
= X ^ (X << 11) ^ (X >> 8) ^ (X << 3)
将X的每个位表示为x0,x1,x2,... x31,并将a
的每个位表示为a0,a1,...我们可以形成以下等式系统:
x0 ^ x8 = a0
x1 ^ x9 = a1
.....
或者,相当于:
(x0 + x8) % 2 = a0
(x1 + x9) % 2 = a1
....
我们可以通过应用Gaussian elimination轻松解决这个问题。