我想在DataFrame
上使用Scala中的指定架构进行创建。我曾尝试使用JSON读取(我的意思是阅读空文件),但我认为这不是最好的做法。
答案 0 :(得分:97)
假设您需要具有以下架构的数据框:
root
|-- k: string (nullable = true)
|-- v: integer (nullable = false)
您只需为数据框定义架构并使用空RDD[Row]
:
import org.apache.spark.sql.types.{
StructType, StructField, StringType, IntegerType}
import org.apache.spark.sql.Row
val schema = StructType(
StructField("k", StringType, true) ::
StructField("v", IntegerType, false) :: Nil)
// Spark < 2.0
// sqlContext.createDataFrame(sc.emptyRDD[Row], schema)
spark.createDataFrame(sc.emptyRDD[Row], schema)
PySpark等价物几乎完全相同:
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
schema = StructType([
StructField("k", StringType(), True), StructField("v", IntegerType(), False)
])
# or df = sc.parallelize([]).toDF(schema)
# Spark < 2.0
# sqlContext.createDataFrame([], schema)
df = spark.createDataFrame([], schema)
将隐式编码器(仅限Scala)与Product
类型Tuple
一起使用:
import spark.implicits._
Seq.empty[(String, Int)].toDF("k", "v")
或案例类:
case class KV(k: String, v: Int)
Seq.empty[KV].toDF
或
spark.emptyDataset[KV].toDF
答案 1 :(得分:3)
import scala.reflect.runtime.{universe => ru}
def createEmptyDataFrame[T: ru.TypeTag] =
hiveContext.createDataFrame(sc.emptyRDD[Row],
ScalaReflection.schemaFor(ru.typeTag[T].tpe).dataType.asInstanceOf[StructType]
)
case class RawData(id: String, firstname: String, lastname: String, age: Int)
val sourceDF = createEmptyDataFrame[RawData]
答案 2 :(得分:3)
在这里,您可以使用scala中的StructType创建模式并传递Empty RDD,以便您可以创建空表。 以下代码是相同的。
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.IntegerType
import org.apache.spark.sql.types.BooleanType
import org.apache.spark.sql.types.LongType
import org.apache.spark.sql.types.StringType
//import org.apache.hadoop.hive.serde2.objectinspector.StructField
object EmptyTable extends App {
val conf = new SparkConf;
val sc = new SparkContext(conf)
//create sparksession object
val sparkSession = SparkSession.builder().enableHiveSupport().getOrCreate()
//Created schema for three columns
val schema = StructType(
StructField("Emp_ID", LongType, true) ::
StructField("Emp_Name", StringType, false) ::
StructField("Emp_Salary", LongType, false) :: Nil)
//Created Empty RDD
var dataRDD = sc.emptyRDD[Row]
//pass rdd and schema to create dataframe
val newDFSchema = sparkSession.createDataFrame(dataRDD, schema)
newDFSchema.createOrReplaceTempView("tempSchema")
sparkSession.sql("create table Finaltable AS select * from tempSchema")
}
答案 3 :(得分:1)
用于创建空DataSet的Java版本:
public Dataset<Row> emptyDataSet(){
SparkSession spark = SparkSession.builder().appName("Simple Application")
.config("spark.master", "local").getOrCreate();
Dataset<Row> emptyDataSet = spark.createDataFrame(new ArrayList<>(), getSchema());
return emptyDataSet;
}
public StructType getSchema() {
String schemaString = “column1 column2 column3 column4 column5”;
List<StructField> fields = new ArrayList<>();
StructField indexField = DataTypes.createStructField(“column0”, DataTypes.LongType, true);
fields.add(indexField);
for (String fieldName : schemaString.split(" ")) {
StructField field = DataTypes.createStructField(fieldName, DataTypes.StringType, true);
fields.add(field);
}
StructType schema = DataTypes.createStructType(fields);
return schema;
}
答案 4 :(得分:1)
这对测试很有帮助。
Seq.empty[String].toDF()
答案 5 :(得分:0)
自Spark 2.4.3起
val df = SparkSession.builder().getOrCreate().emptyDataFrame
答案 6 :(得分:0)
我有一个特殊要求,其中我已经有一个数据框,但在一定条件下,我必须返回一个空的数据框,因此我返回了df.limit(0)
。