我是Spark的新手,我正在使用scala进行编码。我想从HDFS或S3读取文件并将其转换为Spark Data框架。 Csv文件的第一行是架构。但是如何使用具有未知列的模式创建数据框? 我使用以下代码为已知模式创建数据框。
[vagrant@localhost horizon]$ git remote rm origin
[vagrant@localhost horizon]$ git remote add origin ssh://git@bitbucket.org/user_name/repo_name.git
[vagrant@localhost horizon]$ git push -u origin master
Warning: Permanently added the RSA host key for IP address '131.103.20.167' to the list of known hosts.
Permission denied (publickey).
fatal: Could not read from remote repository.
Please make sure you have the correct access rights
and the repository exists.
}
答案 0 :(得分:4)
您可以尝试使用以下代码亲爱的hammad
val sc = new SparkContext(new SparkConf().setMaster("local").setAppName("test"))
val sqlcon = new SQLContext(sc)
//comma separated list of columnName:type
def main(args:Array[String]){
var schemaString ="Id:int,FirstName:text,LastName:text,Email:string,Country:text"
val schema =
StructType(
schemaString.split(",").map(fieldName => StructField(fieldName.split(":")(0),
getFieldTypeInSchema(fieldName.split(":")(1)), true)))
val rdd=sc.textFile("/users.csv")
val noHeader = rdd.mapPartitionsWithIndex(
(i, iterator) =>
if (i == 0 && iterator.hasNext) {
iterator.next
iterator
} else iterator)
val rowRDDx =noHeader.map(p => {
var list: collection.mutable.Seq[Any] = collection.mutable.Seq.empty[Any]
var index = 0
var tokens = p.split(",")
tokens.foreach(value => {
var valType = schema.fields(index).dataType
var returnVal: Any = null
valType match {
case IntegerType => returnVal = value.toString.toInt
case DoubleType => returnVal = value.toString.toDouble
case LongType => returnVal = value.toString.toLong
case FloatType => returnVal = value.toString.toFloat
case ByteType => returnVal = value.toString.toByte
case StringType => returnVal = value.toString
case TimestampType => returnVal = value.toString
}
list = list :+ returnVal
index += 1
})
Row.fromSeq(list)
})
val df = sqlcon.applySchema(rowRDDx, schema)
}
def getFieldTypeInSchema(ftype: String): DataType = {
ftype match {
case "int" => return IntegerType
case "double" => return DoubleType
case "long" => return LongType
case "float" => return FloatType
case "byte" => return ByteType
case "string" => return StringType
case "date" => return TimestampType
case "timestamp" => return StringType
case "uuid" => return StringType
case "decimal" => return DoubleType
case "boolean" => BooleanType
case "counter" => IntegerType
case "bigint" => IntegerType
case "text" => return StringType
case "ascii" => return StringType
case "varchar" => return StringType
case "varint" => return IntegerType
case default => return StringType
}
}
希望它会对你有所帮助。 :)