我想使用Spark数据帧的架构创建一个hive表。我怎么能这样做?
对于固定列,我可以使用:
val CreateTable_query = "Create Table my table(a string, b string, c double)"
sparksession.sql(CreateTable_query)
但是我的数据框中有很多列,所以有没有办法自动生成这样的查询?
答案 0 :(得分:10)
假设您正在使用Spark 2.1.0或更高版本,而my_DF是您的数据框,
//get the schema split as string with comma-separated field-datatype pairs
StructType my_schema = my_DF.schema();
StructField[] fields = my_schema.fields();
String fieldStr = "";
for (StructField f : fields) {
fieldStr += f.name() + " " + f.dataType().typeName() + ",";
}
//drop the table if already created
spark.sql("drop table if exists my_table");
//create the table using the dataframe schema
spark.sql("create table my_table(" + fieldStr.subString(0,fieldStr.length()-1)+
") row format delimited fields terminated by '|' location '/my/hdfs/location'");
//write the dataframe data to the hdfs location for the created Hive table
my_DF.write()
.format("com.databricks.spark.csv")
.option("delimiter","|")
.mode("overwrite")
.save("/my/hdfs/location");
使用临时表的另一种方法
my_DF.createOrReplaceTempView("my_temp_table");
spark.sql("drop table if exists my_table");
spark.sql("create table my_table as select * from my_temp_table");
答案 1 :(得分:7)
根据您的问题,您似乎想要使用数据框架架构在hive中创建表格。但正如您所说,在该数据框中有许多列,因此有两个选项
考虑以下代码:
package hive.example
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession
object checkDFSchema extends App {
val cc = new SparkConf;
val sc = new SparkContext(cc)
val sparkSession = SparkSession.builder().enableHiveSupport().getOrCreate()
//First option for creating hive table through dataframe
val DF = sparkSession.sql("select * from salary")
DF.createOrReplaceTempView("tempTable")
sparkSession.sql("Create table yourtable as select * form tempTable")
//Second option for creating hive table from schema
val oldDFF = sparkSession.sql("select * from salary")
//Generate the schema out of dataframe
val schema = oldDFF.schema
//Generate RDD of you data
val rowRDD = sc.parallelize(Seq(Row(100, "a", 123)))
//Creating new DF from data and schema
val newDFwithSchema = sparkSession.createDataFrame(rowRDD, schema)
newDFwithSchema.createOrReplaceTempView("tempTable")
sparkSession.sql("create table FinalTable AS select * from tempTable")
}
答案 2 :(得分:2)
从spark 2.4开始,您可以使用该功能 dataframe.schema.toDDL来获取列名和类型(甚至对于嵌套结构)
答案 3 :(得分:1)
另一种方法是使用StructType上可用的方法。sql,simpleString,TreeString等...
这里是一个例子-(直到Spark 2.3)
// Sample Test Table to create Dataframe from
spark.sql(""" drop database hive_test cascade""")
spark.sql(""" create database hive_test""")
spark.sql("use hive_test")
spark.sql("""CREATE TABLE hive_test.department(
department_id int ,
department_name string
)
""")
spark.sql("""
INSERT INTO hive_test.department values ("101","Oncology")
""")
spark.sql("SELECT * FROM hive_test.department").show()
// Create DDL from Spark Dataframe Schema
val sqlrgx = """(struct<)|(>)|(:)""".r
val sqlString = sqlrgx.replaceAllIn(spark.table("hive_test.department").schema.simpleString, " ")
spark.sql(s"create table hive_test.department2( $sqlString )")
Spark 2.4以后,您可以在StructType上使用fromDDL和toDDL方法-
val fddl = """
department_id int ,
department_name string,
business_unit string
"""
// fromDDL defined in DataType
//val schema3: DataType = org.apache.spark.sql.types.DataType.fromDDL(fddl)
val schema3: StructType = org.apache.spark.sql.types.StructType.fromDDL(fddl)
//toDDL defined in StructType
// Create DDL String from StructType
val tddl = schema3.toDDL
spark.sql(s"drop table if exists hive_test.department2 purge")
spark.sql(s"""create table hive_test.department2 ( $tddl )""")
spark.sql("""
INSERT INTO hive_test.department2 values ("101","Oncology","MDACC Texas")
""")
spark.table("hive_test.department2").show()
spark.sql(s"drop table hive_test.department2")
答案 4 :(得分:0)
这是PySpark版本从镶木地板文件创建Hive表。您可能已使用推断的架构生成了Parquet文件,现在希望将定义推送到Hive Metastore。您还可以将定义推送到AWS Glue或AWS Athena等系统,而不仅仅是Hive Metastore。这里我使用spark.sql来推送/创建永久表。
# Location where my parquet files are present.
df = spark.read.parquet("s3://my-location/data/")
cols = df.dtypes
buf = []
buf.append('CREATE EXTERNAL TABLE test123 (')
keyanddatatypes = df.dtypes
sizeof = len(df.dtypes)
print ("size----------",sizeof)
count=1;
for eachvalue in keyanddatatypes:
print count,sizeof,eachvalue
if count == sizeof:
total = str(eachvalue[0])+str(' ')+str(eachvalue[1])
else:
total = str(eachvalue[0]) + str(' ') + str(eachvalue[1]) + str(',')
buf.append(total)
count = count + 1
buf.append(' )')
buf.append(' STORED as parquet ')
buf.append("LOCATION")
buf.append("'")
buf.append('s3://my-location/data/')
buf.append("'")
buf.append("'")
##partition by pt
tabledef = ''.join(buf)
print "---------print definition ---------"
print tabledef
## create a table using spark.sql. Assuming you are using spark 2.1+
spark.sql(tabledef);